(3.236.228.250) 您好!臺灣時間:2021/04/17 14:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃慶文
研究生(外文):Huang Ching-Wen
論文名稱:抗菌氫氧基磷灰石覆層研究
論文名稱(外文):Anti-bacteria hydroxyapatite coating
指導教授:金 重 勳周 鳳 英
指導教授(外文):T. S. ChinF. I. Chou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:80
中文關鍵詞:氫氧基磷灰石覆層溶膠-凝膠法抗菌
外文關鍵詞:Hydroxyapatitesol-gel coatingantibacteria
相關次數:
  • 被引用被引用:5
  • 點閱點閱:432
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:0
氫氧基磷灰石 (Hydroxyapatite, HAp)為人體骨骼中主要的無機成分,具有良好的生物相容性,臨床上常被應用在骨科及牙科方面。本研究以溶膠-凝膠法合成具有抗菌性之氫氧基磷灰石(HAp)粉體與覆層,並且進行覆層與齵齒病原菌Streptococcus mutans的抗菌實驗,及細胞毒性測試。
在不同銀含量的HAp覆層中,添加100 ppm銀離子於前驅物中所得的覆層,即可產生抑菌效果,10000ppm銀離子的添加可在固態培養基上產生明顯的抑菌環。在不同鋅含量的HAp覆層中,只有添加10000 ppm鋅離子的覆層才能產生抑菌效果。此外,在製備完成的HAp塗層表面上塗佈抗生素(PSA;Penicillin,Streptomycin Amphotericin)也可產生抑菌環。初步的細胞毒性測試結果顯示,比較添加相同濃度之銀、鋅於前驅物的覆層時,添加鋅者較利於人類齒齦纖維母細胞(HGF-1)之貼覆生長。
所以在考量抗菌效果、生物相容性及低成本的牙科植體材料上,未來可製備混合添加微量銀及少量鋅元素之覆層,鋅用量雖需高於1%,但便宜、無毒且可促進HGF-1生長,未來可嘗試100ppm Ag +10000ppm Zn之配方。
Hydroxyapatite (Ca10(PO)6(OH)2, HAp) is known for its biocompatibility in calcified tissues, and has been prepared in many forms for orthopedic and dental applications. HA is always directly implanted into the body, so that HAp with anti-bacterial property will extend its application and benefit the storage.
In this study, our aim is to prepare effective antibacterial HAp powders and HAp coating on Ti-6Al-4V. Sol-gel method was employed to synthesize Ag-doped or Zn-doped HAp films, and the antibacterial test of HAp versus S. mutans was performed. With an addition of 100 ppm Ag+ ions in the sol-gel precursor, calcined HAp films showed growth suppression of the pathogen. Apparent inhibition zone was found for HAp film with increased Ag+ ions addition of 10000 ppm. But for the addition of Zn2+ ions, the inhibition zone can be found only when adding 10000 ppm and more Zn2+ ions to HAp precursor. The cytotoxicity tests showed that the HAp films with Zn2+ ions addition are better for the attachment and spread of human gingival fibroblasts (HGF-1).
In order to reduce production cost of dental implants for future applications, addition of both Ag and Zn in to HAp films is suggested.
第一章 緒論 1
1.1 前言………………………………………………………………………1
1.2 研究目的…………………………………………………………………2
第二章 文獻回顧 4
2.1 氫氧基磷灰石之生物適應性及其基本性質……………………………4
2.2 氫氧基磷灰石覆層………………………………………………………8
2.2.1氫氧基磷灰石覆層之特性…………………………………………8
2.2.2氫氧基磷灰石之覆層技術………………………………………10
2.3 溶膠-凝膠法合成氫氧基磷灰石覆層…………………………………14
2.3.1溶膠-凝膠法………………………………………………………14
2.3.2溶膠-凝膠法合成氫氧基磷灰石………………………………….16
2.4 鈦與鈦合金……………………………………………………………18
2.5 固定化抗菌材料………………………………………………………..22
2.5.1固定化抗菌材料簡介……………………………………………..22
2.5.2銀離子之抗菌機構………………………………………………..26
2.5.3 鋅離子之抗菌機構……………………………………………….27
2.5.4元素添加及取代對氫氧基磷灰石的影響………………………..28
2.6 生物相容性測試………………………………………………………..29
第三章 實驗方法與步驟 31
3.1 實驗流程………………………………………………………………..31
3.2 材料製備與性質量測………………………………………………..32
3.2.1以溶膠-凝膠法製備HAp粉末……………………………………32
3.2.2以溶膠-凝膠法製備HAp覆層於Ti-6Al-4V基材上……………33
3.2.3膠體質差/熱差(TG/DTA)分析……………………………………33
3.2.4 X光繞射分析……………………………………………………..34
3.2.5電子顯微鏡分析…………………………………………………..34
3.2.6粉體樣品成分分析………………………………………………..34
3.2.7接著強度測試……………………………………………………..35
3.3 抗菌性質測試…………………………………………………………..36
3.3.1 Streptococcus mutans菌株培養與培養基配置…………………..36
3.3.1.1培養基及磷酸緩衝液之配置…………….…………………36
3.3.1.2 Streptococcus mutans菌株培養與觀察……………………..37
3.3.2材料抗菌性質測試與觀察………………………………………..37
3.4 細胞毒性測試…………………………………………………………..38
3.4.1人類齒齦纖維母細胞之培養……………………………………..38
3.4.1.1培養基及磷酸緩衝液之配置……………………………….38
3.4.1.2 HGF-1之培養與保存……………………………………….39
3.4.2細胞毒性測試……………………………………………………..40
3.4.2.1細胞型態觀察………………………………………………..40
3.4.2.2 Acid Phosphatase Assay……………………………………..41
第四章 結果與討論 43
4.1以溶膠-凝膠法製備抗菌氫氧基磷灰石………………………………43
4.1.1膠體質差/熱差(TG/DTA)分析結果……………………………..43
4.1.2酸鹼值量測結果…………………………………………………..47
4.1.3 X光繞射分析結果………………………………………………..49
4.1.4電子顯微鏡分析結果……………………………………………..52
4.1.5粉體樣品成分分析結果…………………………………………..57
4.1.6接著強度測試……………………………………………………..59
4.2覆層材料對Streptococcus mutans的影響………………………………60
4.2.1 Streptococcus mutans菌株培養與觀察結果……………………..60
4.2.2材料抗菌性質測試結果…………………………………………..61
4.3材料之細胞毒性測試……………………………………………………64
4.3.1 HGF-1細胞形態觀察結果………………………………………..64
4.3.2 細胞毒性測試結果……………………………………………….66
第五章 結論 70
第六章 未來研究建議 71
參考文獻 72
1. M. Jarcho, “Calcium phosphate ceramics as hard tissue prosthetics”, Clin. Orthop. Rel. Res., 157, 259, 1981.
2. P. M. Pilliar, H. U. Cameron, A. G. Binnington, J. A. Szvek, “Bone ingrowth and stress shielding with a porous surface coated fracture fixation plate”, J. Biomed. Mater. Res., 13, 799, 1990.
3. J. Chen, W. Tong, Y. Cao, J. Feng, X. Zhang, “Effect of atmosphere on phase transformation in plasma-sprayed hydroxyapatite coatings during heat treatment”, J. Biomed. Mater. Res., 34, 15, 1997.
4. A. C. Tas, F. Korkusuz, M. Timicin, N. Akkas, “An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics”, J. Mater. Sci. Mater. Med., 8, 91, 1997.
5. S. H. Rhee, J. Tanaka, “Hydroxyapatite coating on a collagen membrane by a biomimetic method”, J. Amer. Ceram. Soc., 81, 3029, 1998.
6. R. R. Ramachandra, H. N. Roopa, T. S. Kannan, “Solid state synthesis and thermal stability of HAP and HAP-β-TCP composite ceramic powders”, J. Mater. Sci. Mater. Med., 8, 511, 1997.
7. H. S. Liu, T. S. Chin, L. S. Lai, S. Y. Chiu, K. H. Chung, C. S. Chang, M. T. Lui, “Hydroxyapatite synthesized by a simplified hydrothermal method”, Ceram. Int., 23, 19, 1997.
8. P. Layrolle, A. Ito, T. Tateishi, “Sol-gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics”, J. Amer. Ceram. Soc., 81, 1421, 1998.
9. A. Jillavenkatesa, R. A. Condrate, “Sol-gel processing of hydroxyapatite”, J. Mater. Sci., 33, 4111, 1998.
10. C. M. Lopatin, V. Pizziconi, T. L. Alford, T. Laursen, “Hydroxyapatite powders and thin films prepared by a sol-gel technique”, Thin Solid Films, 326, 227, 1998.
11. H. Aoki, “Medical application of hydroxyapatite”, Ishiyaku Euro America, Inc. Tokyo. St. Louis, Takayama Press, 1994.
12. M. Jacho, “Calcium phosphate ceramics as hard tissue prosthetics”, Clin. Orthop. Rel. Res, 157, 259, 1981.
13. K. de Groot, “Medical applications of calcium phosphate bioceramics”, 日本協會學術論文誌, 99, 943, 1991.
14. J. S. Sun, H. C. Liu, Walter H. S Chang, J. Li, F.H. Lin, H. C. Tai, “The influence of hydroxyapatite particle size on bone cell activities: an in vitro study”, J. Biomed. Mater. Res., 39, 390, 1998.
15. M. Mattioli Belmonte, A. de Benedittis, R. A. A. Muzzarelli, M. G. Gandolfi, C. Zucchini, A. Krajewski, A. Ravaglioli, E. Roncari, M. Fini, R. Giardino, “Bioactivity modulation of bioactive materials in view of their application in osteoporotic patients”, J. Mater. Sci. Mater. Med., 9, 485, 1998.
16. A. Lopez-Macipe, J. Homez-Morales, R. Rodriguez-Clemente, “Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating”, Adv. Mater., 10, 49, 1998.
17. J. S. Sun, H. C. Liu, W. H. S Chang, J. Li, F. H. Lin, H. C. Tai, “The influence of hydroxyapatite particle size on bone cell activities: an in vitro study”, J. Biomed. Mater. Res., 39, 390, 1998.
18. M. Mattioli Belmonte, A. de Benedittis, R. A. A. Muzzarelli, M. G. Gandolfi, C. Zucchini, A. Krajewski, A. Ravaglioli, E. Roncari, M. Fini, R. Giardino, “Bioactivity modulation of bioactive materials in view of their application in osteoporotic patients”, J. Mater. Sci. Mater. Med., 9, 485, 1998.
19. K. de Groot, “Bioceramics of Calcium Phosphate”, CRC Press, Inc., Florida, 1983.
20. Michael Jarcho, “Calcium-phosphate ceramics as hard tissue prosthetics”, Clin. Orthop. Relat. R., 157, 259, 1981.
21. “Hydroxylapatite” Intermdics Orthopedics Inc., January, 1982.
22. Diorio, Acta Cryst., 11, 308, 1958.
23. Suyoshi Kijima, Masayuki Tsutsumi, J. of American Ceramic Society-Uerweij, 62, 455, 1979.
24. T. Negas and R. S. Roth, Journal of Research of the National Bureau of Standards-A. Physics and chemistry, 72A, 783, 1968.
25. H. Newesely and J. F. Osborn, Mechanical Properties of Biomaterials, Edited by G. W. Hastings and D. F. Williams, John Wiley & Sons Ltd., 465, 1980.
26. http://physics.queensu.ca/Feature/ stott/HAbulk_sm.jpg
27. E. J. Duff and A. A. Grant, Mechanical Properties of Biomaterials, Edited by G. W. Hastings and D. F. Williams, John Wiley & Sons Ltd., 465, 1980.
28. M. S. Block, J. N. Kent, and J. F. Kay, “Evaluation of hydroxylapatite-coated titanium dental implants in dogs”, J. Oral Maxillofac Surg., 45, 601, 1987.
29. L. B. Lum, J. F. Osier, R. Nowell, and G. Lukes, “Early uncovering of HA-coated cylinder implants: case report of an in vivo shear strength test”, J Oral Implantol., 18, 138, 1992.
30. S. D. Cook, K. A. Thomas, J. F. Kay, and M. Jarcho, “Hydroxyapatite-coated porous titanium for use as an orthopedic biologic attachment system”, Clin Orthop., 230, 303,1988.
31. R. H. Emerson, Jr., W.C. Head, and P.C. Peters, “Comparison of the early healing course of porous titanium with hydroxyapatite-coated porous titanium hip implants: clinical considerations for the use of hydroxyapatite coating in total hip replacement”, Semin Arthroplasty., 2, 295, 1991.
32. D. P. Rivero, J. Fox, A. K. Skipor, R. M. Urban, and J. O. Galante, “Calcium phosphate-coated porous titanium implants forenhanced skeletal fixation”, J. Biomed. Mater. Res., 22, 191, 1988.
33. K. A. Thomas, J. F. Kay, S. D. Cook, and M. Jarcho, “The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials”, J. Biomed. Mater. Res., 21, 1395, 1987.
34. P. Thomsen and L. E. Ericson, “Light and transmission electron microscopy used to study the tissue morphology close to implants”, Biomaterials., 6, 421, 1985.
35. Bao-Chyi Wang, “Characteristics and Biological Responses of Plasma-sprayed Hydroxyapatite Coatings on Ti-6Al-4V Substrate”, National Cheng-Kung University, 1993.
36. Hideki and Aoki, Science and Medical Application of hydroxyapaitie, pp.123
37. Ogiso M., Yamashita Y., and Matsumoto T., “Difference in microstructural characteristics of dense HA and HA coating”, J. Biomed. Mater. Res., 41, 296, 1998.
38. W. Tong, J. Chen, and X. Zhang, “Amorphorization and recrystallization during plasma spraying of hydroxyapatite”, Biomaterials, 11, 829, 1995.
39. T. V. Vi jayaraghavan and A. Bensalen, “Electrodeposition of apatite coating on pure titanium and titanium alloys”, J. of Mat. Sci. Letters, 13, 1782, 1994.
40. Kuzweg H., Heimaann R. B., Troczynske T., and Wayman M. L., “Development of plasma sprayed bioceramic coatings with bondcoats based on titanium and zirconia”, Biomaterials, 19, 1507, 1997.
41. H. Monma, “Electrolytic depositions of calcium phosphates on substrate”, J. of Mat. Sci., 29, 949, 1994.
42. S. Ban and S. Maruno, “Deposition of calcium phosphate on titanium by electrochemical process in simulated body fluid”, Jpn., J. Appl. Phvs., 32, 1555, 1993.
43. S. W. Russ, K. A. Luptak, C. T. Alford, and V. B. Pizziconi, J. Am. Ceram. Soc., 79, 837, 1996
44. P. Li and K. de Groot, “Calcium phosphate formation within sol gel prepared titania in vitro and in vivo”, J. of Bio. Mat. Res., 27, 1495, 1993.
45. Wie H., Hero H., and Solheim T., “Hot isolation pressing processed hydroxyapatite coated titanium implants: light microscopic and scanning electron microscopy investigations”, Int. J. Oral Maxillofac Implants, 13, 837, 1998.
46. Biing Yow Wu and A. S. T. Chiang, “Sol gel coating and its applications”, Chinese J. of Materials Science, 28, 169, 1996.
47. 鍾仁傑, “以溶膠-凝膠法製備含鋅及銀之氫氧基磷灰石與其抗菌性質研究”, 清華大學材料科學工程研究所碩士論文
48. 謝明發, “溶凝膠法合成氫氧基磷灰石及其製程與鑑定之研究, 清華大學材料科學工程研究所博士論文
49. Bothe, R. T., Beaton, K. E., and H. A. Davenport, “Reaction of Bone to Multiple Metallic Implants”, Surgery, Gynecology and Obstetrics, 71, 598, 1940.
50. Williams, D. F., “Biocompatibility of Clinical Implant Materials”, Titanium and Titanium Alloy, in D. F. Williams, Boca Raton, CRC Press, 1, 9, 1981.
51. Klaas de Groot, John A. Jansen, Joop G. C. Wolke, Christel P. A. T. Klein, and Clemens A. van Blitterswijk, “Developments in Bioactive Coatings”, Hydroxyapatite Coatings in Orthopaedic Surgery, edited by R. G. T. Geesink and M. T. Manley, Raven Press, Ltd., New York, 1993.
52. U. Gross, C. Muller-Mai, and C. Voigt, “Systemic control of tissue and cell reactions relating to ceramic implants”, Proceedings of the internation congress on bioceramics and the human body held in Faenza, Italy, 275, 1991.
53. Andersson M., Bergman B., Bessing C., Ericson E., Lundquist P., and Nilson H., “Cliecal results with titanium crowns fabricated with machine duplication and spark erosion”, Acta Odont Scand, 47, 279, 1989.
54. Blakman R., Barghi N., and Tran C., “Dimensional changes in casting titanium removable partial denture frameworks”, J. Prosther. Dent., 65, 309, 1991.
55. Hruska A. R., “Intraoral welding of pure titanium”, Quintessence Int., 18, 683, 1987.
56. Russill R. Wang and Kon K. Fung, “Oxidation behavior of surface modified titanium for titanium ceramic restoration”, J. Prosthet. Dent., 77, 423, 1997.
57. 蕭威典, “電漿熔射氫氧基磷灰石塗層披覆於聚二醚銅基材上之研究”, 長庚大學化工與材料研究所碩士論文
58. 林菁菁, “PAN系活性碳纖維鍍銀之物性、微結構及抗菌能力研究”, 逢甲大學材料科學研究所碩士論文
59. 蔡東和, “橡膠製品之表面抗菌處理”, 大葉大學食品工程學系碩士論文
60. Q. L. Feng, J. Wu, G. Q. Chen, K. Zhao, F. Z. Cui, and T. N. Kim, “A mechanism study of antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus”, J. Biomed Mater. Res., 52, 662, 2000.
61. A. Ito, K. Ojima, H. Naito, N. Ichinose, and T. Tateishi, “Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics”, J. Biomed. Mater. Res., 50, 178, 2000.
62. H. Kawamura, A. Ito, S. Miyakawa, P. Layrolle, K. Ojima, N. Ichinose, and T. Tateishi, “Stimulatory effect of zinc-releasing calcium phosphate implane on bone formation in rabbit femora”, J. Biomed. Mater. Res., 50, 184, 2000.
63. Baljit S. Moonga and David W. Dempster, “Zinc is a potent inhibitor of osteocalstic bone resorption in vitro”, J. Bone Miner. Res., 10, 453, 1995.
64. M. J. Root, “Inhibition of the amorphous calcium phosphate transformation reaction by polyphosphonates and metal ions”, Calcif. Tissue Int., 47, 112, 1990.
65. Y. Okamoto and S. Hidaka, “Studies on calcium phosphate precipitation: Effects of metal ions used in dental materials”, J. Biomed. Mater. Res., 28, 1403, 1994.
66. A. Bigi, E. Foresti, M. Gandolfi, M. Gazzano, and N. Rovri, “Inhibiting effect of Zinc on hydroxyapatite crystallization”, J. Inorg. Biochem., 58, 49, 1995.
67. N. Kanzaki, K. Onuma, G. Treboux, S. Tsutsumi, and A. Ito, “Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0001) face”, J. Phys. Chem. B., 104, 4189, 2000.
68. D. F. Williams and R. Roaf, “Implants in Surgery”, W.B. Saunders Company, London, 149, 1973.
69. Browne. R. M. and Tyas M. J., “Biological testing of dental restorative materials in vitro - A review”, J Oral Rehabil, 6, 65, 1979.
70. Dahl B. L., Tronstad L., and Spanberg L., “Biological tests of a silicophosphate cement”, J. Oral. Rehabil.; 2, 249, 1975.
71. Dahl B. L. and Tronstad L., “Biological tests on an experimental glass ionomer (silicopolyacrylate) cement”, J. Oral. Rehabil., 3, 19, 1976.
72. Baginska J. and Szczukowiski K., “Studies of the decomposition of calcium nitrate and nitrite in nitrogen and nitrogen dioxide atmosphere”, Zesz. Nauk. Politech. Slask. Chem., 141, 1986.
73. M. F. Hsieh, L. H. Perng, T. S. Chin, and H. Q. Perng, “Gel-to-ceramic conversion during hydroxyapatite synthesis”, J. Am. Ceram. Soc., 84, 2123, 2001.
74. M. F. Hsieh, L. H. Perng, and T. S. Chin, “Formation mechanisms of sol-gel-derived hydroxyapatite using different thermal processings”, J. Sol-gel Sci. Techn., 23, 205, 2002.
75. M. F. Hsieh, L. H. Perng, T. S. Chin, and H. Q. Perng, “Phase purity of sol-gel-derived hydroxyapatite ceramic”, Biomaterials, 22, 2601, 2001.
76. 馮普陽, 吳建峰, 徐曉紅, “沸石抗菌劑”, 武漢理工大學
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔