(3.235.41.241) 您好!臺灣時間:2021/04/15 05:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃嬌嬋
研究生(外文):Chiao-Chung Huang
論文名稱:添加氧化鋁之硼矽玻璃的束縛燒結
論文名稱(外文):Constrain Sintering of Ceramic-filled Glass
指導教授:簡朝和
指導教授(外文):Jau-ho Jean
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:38
中文關鍵詞:硼矽玻璃束縛燒結燒結驅動力
外文關鍵詞:contrain sintering
相關次數:
  • 被引用被引用:1
  • 點閱點閱:212
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本文以添加氧化鋁的硼矽玻璃系統為研究對象,進行由外加應力之束縛燒結的應力分析。實驗以熱機械分析儀,對試片施以固定的壓力,量測系統在不同溫度下之完全束縛燒結應力,發現其值與溫度相關,隨著溫度變化,範圍介於30-220kPa之間,當溫度增高,在725~800℃之間有一最大值,過此溫度後,應力值隨著溫度升高而降低。
此外,對試片施以週期性壓力,可由系統高溫時之應變行為,輔以黏性流動之構成方程式,求得理論束縛燒結應力與燒結驅動力,發現其值與由實驗量測所得之完全束縛燒結應力有相同之趨勢,且完全束縛燒結應力的理論值與實驗值有一良好之近似性。

目 錄
1.簡介-----1
2.實驗方法-----3
2.1 漿料備製-----3
2.2 刮刀製程-----4
2.3 疊壓-----4
2.4 脫脂除碳-----4
2.5 燒結-----5
2.6 微結構觀察-----5
3.結果討論-----5
3.1 固定外加應力之束縛燒結-----5
3.1.1 束縛燒結之Z軸應變曲線-----5
3.1.2 束縛燒結之X-Y軸應變曲線-----6
3.1.3 束縛燒結之緻密行為-----8
3.1.4 束縛燒結之微結構觀察-----9
3.2 週期性外加應力之束縛燒結-----9
3.2.1 束縛燒結之應變行為-----10
3.2.2 單軸向黏度值的量測-----13
3.2.3 燒結體在高溫之流變行為-----14
3.2.4 完全束縛燒結應力-----15
3.2.5 燒結驅動力-----15
3.2.6 燒結驅動力對緻密行為之影響-----18
3.2.7 束縛燒結應力理論值與實驗值之比較-----18
4.結論-----19
5.參考文獻-----20

參考文獻
[1] W.A. Vitrio and R.L. Brown, “Process for Fabricating Dimensionally
Stable Interconnect Boards,” US patent No. 4,656,552, 1987.
[2] K.R. Mikeska and D.T. Schaefer, “Method for Reducing Shrinkage during Firing of Ceramic Bodies,” US patent 5,454,741, 1994.
[3] B. Geller, B. Thaler, A. Fathy, M.J. Liberatore, H.D. Chen, G. Ayers, V. Pendrick and Y. Narayan, “LTCC-M: An Enabling Technology for High Performance Multilayer RF Systems,” J. Microwave, 7, 64-72 (1999).
[4] J. Bang and G.Q. Lu, “Constrained-Film Sintering of a Borosilicate Glass: In-situ Measurement of Film Stress,” J. Am. Ceram. Soc., 78 [3] 813-15 (1995).
[5] T.J. Garino and H.K. Bowen, “Deposition and Sintering of Particle Films on a Rigid Substrate,” J. Am. Ceram. Soc., 70 [11] C315-17 (1987).
[6] T.J. Garino and H.K. Bowen, “Kinetics of Constrained-Film Sintering,” J. Am. Ceram. Soc., 73 [2] 251-57 (1990).
[7] G. W. Scherer and T. Garino, “Viscous Sintering on a Rigid Substrate,” J. Am. Ceram. Soc., 68 [4] 216-20 (1985).
[8] R.K. Bordia and R. Raj, “Sintering Behavior of Ceramic Films Constrained by a Rigid Substrate,” J. Am. Ceram. Soc., 68 [6] 287-92 (1985).
[9] S.Y. Tzeng and J.H. Jean, “Stress development during Constrained Sinetring of Alumina/Glass/Alumina Sandwich Structure,” J. Am. Ceram. Soc., 85 [2] 335-40 (2002).
[10] Y.C. Lin and J.H. Jean, “Constrained Densification Kinetics of Alumina/Borosilicate Glass+Alumina/Alumina Sandwich Structure,” J. Am. Ceram. Soc., 85 [1] 150-54 (2002).
[11] Y.C. Lin and J.H. Jean, “Constrained Sintering of Silver Circuit Paste,” J. Am. Ceram. Soc., in press (2003).
[12] E.G. Liniger, R. Raj and D. B. Marshall, “The Instability of Polycrystalline Thin Films: Experiments and Theory,” J. Mater. Res., 5 [1] 151-60 (1990).
[13] A. Jagota and C.Y. Hui, “Mechanics of Sintering Thin Films — I. Formulation and Analytical Results,” Mech. Mater., 9, 107-19 (1990).
[14] A. Jagota and C.Y. Hui, “Mechanics of Sintering Thin Films — II. Cracking due to Self-Stress,” Mech. Mater., 11, 221-34 (1991).
[15] R. K. Bordia and A. Jagota, “Crack Growth and Damage in Constrained Sintering Films,” J. Am. Ceram. Soc., 76 [10] 2475-85 (1993).
[16] T. Cheng and R. Raj, “Flaw Generation During Constrained Sintering of Metal-Glass Multilayer Films,” J. Am. Ceram. Soc., 72 [9] 1649-55 (1989).
[17] R.K. Bordia and G.W. Scherer, “On Constrained Sintering — I, Constitutive Model for a Sintering Body,” Acta. Metall., 36 [9] 2393-97 (1988).
[18] R.K. Bordia and G.W. Scherer, “On Constrained Sintering — II, Comparison of Constitutive Models,” Acta. Metall., 36 [9] 2399-2409 (1988).
[19] R.K. Bordia and G.W. Scherer, “On Constrained Sintering — I, Rigid Inclusions,” Acta. Metall., 36 [9] 2411-16 (1988).
[20] G.W. Scherer, “Viscous Sintering under a Uniaxial Load,” J. Am. Ceram. Soc., 69 [9] C-206-07 (1986).
[21] M.N. Rahaman, L.C. DE Jonghe, G.W. Scherer and R.J. Brook, “Creep and Densification during Sintering of Glass Powder Compacts,” J. Am. Ceram. Soc., 70 [10] 766-74 (1987).
[22] V.C. Ducamp and R. Raj, “Shear and Densification of Glass Powder Compacts,” J. Am. Ceram. Soc., 72 [5] 798-804 (1989).
[23] P.Z. Cai, G.L. Messing and D.L. Green, “Determination of the Mechanical Response of Sintering Compacts by Cyclic Loading Dilatometry,” J. Am. Ceram. Soc., 80 [2] 445-52 (1997).
[24] J.H. Jean and C.R. Chang, “Cofiring Kinetics and Mechanisms of an Ag-metallized Ceramic Filled Glass Electronic Package,” J. Am. Ceram. Soc., 80 [12] 3084-92 (1997).
[25] D.C.C. Lam, F.F. Lange, and A.G. Evans, ”Mechanical Properties of Partially Dense Alumina Produced from Powder Compacts, ”J. Am. Ceram, Soc., 77 [8] 2113-17 (1994).
[26] D.J. Green, C. Nader, and R. Brezny, “The Elastic Behavior of Partially-Sintered Alumina,” ;pp.345-56 in Ceramic Transactions, Vol.7, Sintering of Advanced Ceramics. Edited by C.A. Handwerker, J.E. Blendall, and W.A. Kaysser. Aemrican Ceramic Society, Westervile, OH, 1990.
[27] S.C. Nanjangud, R. Brezny, and D.J. Green, ”Strength and Young’s Modulus Behavior of a Partially Sintered Porous Alumina,” J. Am. Ceram. Soc., 78 [1] 266-68 (1995).
[28] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd ed., Wiley, New York, 1976, Chap. 15.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔