(3.238.88.35) 您好!臺灣時間:2021/04/10 20:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林俊宏
研究生(外文):Lin Chun Hung
論文名稱:以反射式調制光譜檢測δ-doping於InGaP/InGaAsN/GaAsHBT磊晶片之特性研究
論文名稱(外文):The character of δ-doping in InGaP/InGaAsN/GaAs HBT wafer by photo-reflectance technique
指導教授:張一熙
指導教授(外文):Yee-Shyi Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:69
中文關鍵詞:調制光譜異質接面光學檢測砷化镓
外文關鍵詞:HBTphoto-reflectanceInGaAsNGaAs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本次實驗利用反射式調制光譜技術對目前發展中的InGaP/InGaAsN/GaAs
HBT 做研究,觀察磊晶層之中加入高濃度的δ-doping 層之後,於PR 上
的譜線變化,同時利用PR 譜線中的FKO 訊號,我們可以計算出基極/集
極與基極/射極區域的內建電場,同時可以求出射極與集極的能隙,在實
驗中發現,具有δ-doping 處理的磊晶片會產生相當特殊的PR 譜線,同時集極部分電場也異常的高,對此現象我們將此類晶片通過製程步驟確實證明該類磊晶片的確無法正常作,且電流增益值等於一,為驗證該現象是否由δ-doping 所造成,我們利用PR 量測技術配合濕式蝕刻方式,在比對各層被蝕刻後的表現,發現其現象是因為加入δ-doping 層所形成,推測其原因應該是壘晶層之間的擴散所形成。

We use the photo-reflectance (PR) technique to measurements
InGaP/InGaAsN/GaAs heterojunction bipolar transistor (HBT)
wafer , we fine the change of photo-reflectance spectrum when
there is a high concentration δ-doping layer added in our sample ,and we can obtained electric field、energy gap in thecollector/base、emitter/base by Franz-Keldysh oscillations (FKOs) from photo-reflectance spectrum . In this experiment , the waferwith δ-doping layer will be have a special PR spectrum and theelectric field are more higher then others . This kind of sample cannot become a good-condition device and their current gain equal 1 .
To analysis this special phenomenal , we etching our sample and
use photo-reflectance technique . After analysis every layer of
sample , we provide that the special phenomenal when the wafer
hasδ-doping layer . In this thesis , we guess it was form by the diffusion between epitaxial layer .

目錄
中文摘要--------------------------------------------------Ⅰ
英文摘要--------------------------------------------------Ⅱ
致謝--------------------------------------------------Ⅲ
目錄--------------------------------------------------Ⅳ
圖表索引--------------------------------------------------Ⅵ
第一章緒論----------------------------------------------1
1.1 HBT 元件之發展背景-------------------------------1
1.2 HBT 之發展---------------------------------------5
1.3 InGaAsN 材料之優點-------------------------------9
1.4 研究主題-----------------------------------------9
第二章調制光譜-----------------------------------------11
2.1 調制光譜技術的起源-------------------------------11
2.2 調制光譜技術種類之簡介---------------------------12
2.3 調制光譜理論-------------------------------------18
2.4 電場調制反射光譜---------------------------------21
2.5 Frenz-Keldysh Oscillation ----------------------------23
2.6 光譜量測系統-------------------------------------25
第三章InGaAsN HBT 結構及實驗部分----------------------30
3.1 磷砷化銦鎵之性質---------------------------------30
3.2 InGaAsN HBT 磊晶片之結構------------------------34
3.3 反射式調制光譜----------------------------------42
3.4 實驗步驟----------------------------------------43
第四章實驗結果與討論----------------------------------47
4.1 磊晶片之FKOs 訊號與電場------------------------47
4.2 δ-doping 對PR 譜線之影響-------------------------53
第五章結論--------------------------------------------62
參考文獻-------------------------------------------------66
圖表索引
圖1-1(a) SiGe HBT 的結構圖--------------------------------8
圖1-1(b) Ⅲ-Ⅴ化合物半導體HBT 結構圖---------------------8
圖2-1 波長調制法--------------------------------------15
圖2-2 反射式調制光譜調制法----------------------------15
圖2-3 無接點式電場調制法------------------------------16
圖2-4 表面光壓電調制法--------------------------------16
圖2-5 壓電調制法--------------------------------------17
圖2-6 極化光調制法------------------------------------17
圖2-7 反射式調制光譜量測系統--------------------------29
圖3-1 GaAsN 及InGaAs 之能帶與應力及含量變化示意圖----32
圖3-2 常用化合物半導體的晶格常數及能隙對照圖----------33
圖3-3 傳統InGaP/GaAs HBT 磊晶片之結構----------------39
圖3-4 InGaP/InGaAsN/GaAs HBT 磊晶片之結構------------40
圖3-5 三種HBT 之能帶結構圖--------------------------41
圖3-6 實驗蝕刻深度示意圖-----------------------------46
圖4-1 典型的HBT 之PR 譜線--------------------------51
圖4-2 HBT 樣品之FKO Fit 取極值----------------------51
圖4-3 HBT 樣品之Emitter 部分以FKO Fit 取極值---------52
圖4-2-1 樣品A 之PR 譜線-------------------------------55
圖4-2-2 樣品B 之PR 譜線-------------------------------55
圖4-2-3 樣品C 之PR 譜線-------------------------------56
圖4-2-4 樣品D 之PR 譜線-------------------------------56
圖4-2-5 樣品E 之PR 譜線-------------------------------57
圖4-2-6 樣品F 之PR 譜線-------------------------------57
圖4-2-7 樣品G 之PR 譜線------------------------------58
圖4-2-8 具有δ-doping 處理之樣品E 完整磊晶片之PR 譜線---58
圖4-2-9 蝕刻掉Cap layer 後之樣品E 的PR 譜線------------59
圖4-2-10 蝕刻掉Contact layer 後之樣品E 的PR 譜線---------59
圖4-2-11 蝕刻掉Emitter 層之後的樣品E 之PR 譜線----------60
圖4-2-12 蝕刻掉Base 層50%後之樣品E 的PR 譜線----------60
圖4-2-10 蝕刻掉Base 層及δ-doping 層之後樣品E 的PR 譜線--61
圖5-1 樣品F 在各層蝕刻後經由PR 量測下的譜線---------64
圖5-2 樣品G 在各層蝕刻後經由PR 量測下的譜線--------65
表1-1 目前Ⅲ-Ⅴ半導體主要的商品及特性----------------4
表3-1 InGaP/InGaAsN/GaAs HBT 之細部結構表-----------38
表4-1 本次實驗樣品所量測得到之Collector 及Emitter 的內建電場
及能隙值--------------------------------------50

1. Kenichi Iga, Fumio Koyama, Susumu Kinoshita, “Surface Emitting
Semiconductor Lasers,” IEEE J. of Quantum Electronics, Vol. 24, No.9,
pp.1845-1855, 1988.
2. Seraphin, B.O., “The Effect of an Electric Field on the Reflectivity of
Germanium,” Proc. 7th Int. Conf. Phys. Semi., ed. By M. Hulin,
Academic, Dunod, Paris, 1964.
3. Kroemer, H. “Hetrostructure Bipolar Transistors and Integrated
Circuit,” Proc. IEEE, Vol. 70, pp.13-25, 1982.
4. Wei S.H., A. Zunger, “Fingerprints of CuPt Ordering in III-V
Semiconductor Alloys: Valance-Band Splittings, Band-Gap Reduction,
and X-ray Structure Factors,” Phys. Rev. B, Vol. 57, No.15,
pp.8983-8988, 1998.
5. Scholz, F.C. Geng, M. Burkard, H.P. Gauggel, H. Schweizer, R. Wirth,
A. Moritz, and A. Hangleiter, “Ordering in InGaP: Is It Relevant for
Device?” Phys. E, Vol. 2, pp.8-14, 1998.
6. Chang, P.C., A.G. Baca, N.Y. Li, X.M. Xie, H.Q. Hou, and E. Armour,
“InGaP/InGaAsN/GaAs NpN Double-Hetrojunction Bipolar
Transistor,” Appl. Phys. Lett., Vol. 76, No.16, pp.2262-2264, 2000.
7. Chen, D.K., Fundamentals of Engineering Electromagnetics,
Addision-Wesley, New York, pp.272-330, 1996.
8. Seraphin, B.O., Semiconductors and Semimetals, Vol. 9, ed. By R.K.
67
Willardson and A.C. Beer, Academic, New York, pp.1-13, 1972.
9. Ernst, P., C. Geng, F. Scholz, H.Schweizer, Y. Zhang, A. Mascarenhas,
“Band-Gap Reduction and Valence-Band Splitting of Ordered GaInP2,”
Appl. Phys. Lett., Vol. 67, No.16, pp.2347-2349, 1995.
10. Froyen, S., A. Zunger, and A. Mascarenhas, “Polarization Fields and
Band Offsets in GaInP/GaAs and Order/Disordered GaInP
Superlattices,” Appl. Phys. Lett., Vol. 68, No.20, pp.2852-2854, 1996.
11. Fresina, M.T., Hartmann, Q.J., Thomas, S., Ahmari, D.A., Caruth, D.,
Feng, M., Stillman, G.E., “InGaP/GaAs HBT with Novel Layer
Structure for Emitter Ledge Fabrication,” Electron Device Meeting,
pp.207-210, 1996.
12. Aspnes, D.E., “Modulation Spectroscopy/Electric Field Effects on the
Dielectric Function of Semiconductors,” Vol. 2, ed. By M. Balkanski,
North-Holland Publishing Co., Amsterdam, pp.109-154, 1980.
13. Aspnes, D.E., “Electric Field Effects on the Dielectric Constant od
Solids,” Phys. Rev., Vol. 153, pp.972-974, 1967.
14. Bloss, W.L., “Electric Field Dependence of the Eigenstates of Couples
Quantum Well,” J. Appl. Phys., Vol. 67, pp.14212-1424, 1990.
15. Wang, E.Y., W.A. Albers, Jr., and C.E. Bleil, “Light Modulated
Reflectance of Semiconductors,” Proc. Int. Conf. On II-VI
Semiconducting Compounds, Benjamin, New York, 1967.
16. C.J. Lin, Modulation Spectroscopy Characterization of InGaP/GaAs
and InGaP/InGaAsN/GaAs NpN Hetrojunction Bipolar Transistor
68
Structures, NTUST EE, 2001.
17. Neamen, D.A., Semiconductor Physics & Device, Chicago, pp.212-220,
1997.
18. T. Maeda, Y. Koide, and M. Murakami, “Effects of NiO on Electrical
Properties of NiAu-based Ohmic Contacts for p-type GaN”, Appl. Phys.
Lett., 75, 4145, 1999.
19. J. K. Sheu, G. C. Chi, and M. J. Jou, “Low-operation Voltage of
InGaN/GaN Light-emitting Diodes by Using a Mg-doped
Al0.15Ga0.85N/GaN Superlattice”, IEEE Electron Device Letters, 22,
160, 2001.
20. P.J. Klar, G. Rowland, T.E. Sale, T.J.C. Hosea, and R. Grey,
“Reflectance and Photomodulated Reflectance Studies of Cavity Mode
and Excitonic Transitions in an InGaAs/GaAs/AlAs/AlGaAs VCSEL
Structure,” Phys. Status Solidi A, Vol. 170, pp.145-158, 1998.
21. F. Ren, J. Han, R. Hickman, J. M. Van Hove, P. P. Chow, J. J.
Klaassen, J. R. LaRoche, K. B. Jung, H. Cho, X. A. Cao, S. M.
Donovan, R. F. Kopf, R. G. Wilson, A. G. Baca, R. J. Shul, L. Zhang,
C. G. Willison, C. R. Abernathy, andS. J. Pearton, “GaN/AlGaN
HBT Fabrication”, Solid-State Electronics, 44, 239, 2000.
22. Y.S. Huang, W. D. Sun, F.H. Pollak, J.L. Freeouf, I.D. Calder, and R.E.
Mallard, “Contactless Electroreflectance Characterization of
GaInP/GaAs Heterojunction Bipolar Transistor Structures,” Appl. Phys.
Lett., Vol. 73, No.2, pp.214-216, 1998.
23. J. W. Johnson, B. Luo, F. Ren, B. P. Gila, W. Krishnamoorthy, C. R.
Abernathy, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee, C. C.
Chuo, “Gd2O3/GaN Metal-Oxide-Semiconductor Field-Effect
Transistor”, Appl Phys Lett, 77, 3230, 2000.
24. S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, M. Umeno, Appl
Phys Lett., ” Investigations of SiO2 / n-GaN and Si3N4 / n-GaN
insulator—semiconductor interfaces with low interface state density”, 73,
809, 1998.
25. Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, J. Kwo, H. S.
Tsai, J. J. Krajewski , J. S. Weiner, Y. K. Chen, A. Y. Cho,
“Depletion-Mode GaAsMOSFETs with Negligible Drain Current Drift
and Hysteresis” MaterialsResearch Society Symposium Proceedings,
573, 219, 1999.
26. M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, M. S.
Shur, “AlGaN/GaN Metal Oxide Semiconductor Heterostructure Field
Effect Transistor”, IEEE Electron. Dev. Lett., 21, 63, 2000.
27. 張勁燕半導體製程設備2002/9
28. 莊達人VLSI 製造技術2002/7/20

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔