跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 10:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱仕宇
研究生(外文):Shih-Yu Chih
論文名稱:以氮化物作為緩衝層在矽基材上成長高品質氮化鎵之研究
論文名稱(外文):nvestigation of High Quality GaN on Si (111) Substrate by Using Nitride Buffer Layer
指導教授:周立人周立人引用關係
指導教授(外文):Li-Jen Chou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:84
中文關鍵詞:氮化鎵緩衝層111氮化鋁氮化鋁鎵氮化矽擴散
外文關鍵詞:GaNbuffer layerSi111AlNAlGaNSi3N4diffusion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:389
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:2
摘要
III-V族氮化物材料在二十世紀末受到科學家廣泛的注目,主要因為其具有直接能隙以及良好的發光效率,能運用在光資訊儲存、高頻電子元件、高亮度發光二極體以雷射二極體等方面,如能在矽基材上成長高品質氮化鎵,就可以把已發展成熟的矽基微電子工業和光電元件整合成在一起,具有很大的發展空間和應用價值。因此,選用適當的緩衝層來成長高品質氮化鎵為目前重要的課題。
本論文中的第一部份探討用不同氣體氮化矽基材所形成β-氮化矽與矽界面性質研究,利用高分辨電子顯微鏡和X光光電子能譜術作一系列的分析探討。發現利用電漿裂解氮氣所形成的β-氮化矽,結構和成分接近化學組成的β-氮化矽,而此β-氮化矽磊晶薄膜的界面電性量測結果顯示快速界面能態密度亦有較佳的品質。
第二部分對利用有機化學氣相沈積法在矽基材上成長氮化鎵,採用氮化鋁鎵以及氮化鋁作為緩衝層,研究氮化鋁厚度的變化對氮化鎵所產生的影響,研究顯示在氮化鋁厚度為25nm時,所成長的氮化鎵具有較良好的品質,超過此厚度,反而會降低氮化鎵的品質。
第三部分利用一擴散阻擋層作為氮化鎵成長在矽基材上之緩衝層研究,發現利用此擴散阻擋層磊晶薄膜能夠改善成長在矽基材上氮化鎵的品質,在光性和物性分析方面,都有較優異的表現。而從能量散佈光譜儀分析上,觀察到此擴散阻擋層磊晶薄膜能夠阻擋矽原子從矽基材擴散到氮化鎵磊晶層中,成功的解決了利用矽基材成長高品質氮化鎵所存在的問題。

Abstract
III-V nitride has attracted much attention in the late 20th century because of its many merits such as tunable direct band gap which cover the lasing wavelength from 300nm to 800nm, highly reliable device property in harsh environment (high temperature) and high luminescence efficiency. It can be made for optical data storage device, high frequency device (RF), and high brightness LED or LD. To take advantage of well matured silicon microelectronic technology, using Si as a substrate to grown high quality GaN film maybe a shortcut to realize the optoelectronic integrated circuitry (OEIC). In this thesis, searching an ideal buffer layer to mitigate the large lattice mismatch between GaN and Si as well as to stop Si inter-diffusion, using HRTEM, PL, SEM and Auger measurements, we successfully identified a diffusion inhibition layer (DIL) which serves the about two reasons quite well. In the first part of the thesis, HRTEM was used to explain the differences of the atomic scale microstructure between NH3 nitridied β-Si3N4 and N2 plasma one. Data indicated that β-Si3N4 formed by plasma enhanced method showed better interfacial properties. HRTEM studies showed that the length of c-axis for β-Si3N4, was more severely elongated by thermal nitridized method. C-V measurements revealed that the fast interface state (Dit) is low for the interface betweenβ-Si3N4 formed by plasma enhanced method and Si substrate. In the second part of the thesis, we studied the thickness effect of the AlN buffer layer in the GaN/AlGaN/AlN/Si growth structure. The results indicated that 25nm of AlN is the best choice for the thickness, either thinner or thicker of the AlN will deteriorate the above GaN optical and physical properties. In the last portion of the thesis, a diffusion inhibition layer was characterized by advanced HRTEM technique. By using EDS mapping method, we reported first time that this DIL can stop the Si inter-diffused to the GaN layer; meanwhile, we discovered defects or dislocations will enhance the Si interdiffusion by EDS line scan spectroscopy. PL and Raman measurements also indicated the better optical and physical properties have been obtained by applying the DIL in between the GaN and Si.

目錄
中文摘要 .................................................I
英文摘要.................................................II
誌謝....................................................III
目錄.....................................................IV
第一章 序論
1.1 簡介...............................................1
1.2 歷史回顧...........................................3
1.3 氮化鎵磊晶基材的選擇...............................5
1.4 氮化物材料性質
1.4.1氮化鎵材料特性...............................6
1.4.2氮化鋁材料特性...............................7
1.4.3氮化矽材料特性...............................8
1.5 動機..............................................9
第二章 實驗程序
2.1 橫截面TEM試片備製...............................11
2.2 高分辨電子顯微影像分析...........................12
2.3 XPS成份分析.....................................13
2.4 MIS 元件製作.....................................14
2.5 C-V量測..........................................15
2.6 分子束磊晶法成長氮化鎵 ..........................16
2.7 有機化學氣相沈積法成長氮化鎵.....................16
第三章 結果與討論
3.1 β-Si3N4 和Si基材介面微結構探討
3.1.1 β-Si3N4 成長機制.............................17
3.1.2 β-Si3N4 和Si界面原子結構探討................18
3.1.3 β-Si3N4化學組成探討..........................21
3.1.4 β-Si3N4電性的探討............................22
3.2 利用AlGaN和AlN作為緩衝層在矽基材上成長高品質氮化鎵
3.2.1 實驗目的......................................23
3.2.2 氮化鎵表面粗糙度之研究........................24
3.2.3 氮化鎵界面結構之研究..........................25
3.2.4氮化鎵發光性質之研究..........................26
3.2.5總論..........................................27
3.3 以擴散阻擋層在矽基材上成長高品質氮化鎵
3.3.1 實驗目的......................................28
3.3.2氮化鎵表面粗糙度之研究........................ 28
3.3.3 氮化鎵界面結構之研究..........................29
3.3.4氮化鎵發光性質之研究..........................32
3.3.5總論..........................................33
第四章 總結..............................................34
參考文獻.................................................36

參考文獻
[1] S. Nakamura, S. Pearton, and G. Fasol, “The Blue Laser Diode”(2000)
[2] Reed Electronics Research, 1999/7
[3] W. C. Johnson, J. B. Parsons, and M. C. Crew, “Nitrogen compound of gallium. I, II,”, J. Phys. Chem. Vol.36, 2588 (1932)
[4] H. P. Maraska, D. A. Stevenson, and J. I. Pankove, “Violet luminescence of Mg — doped GaN+”, Appl. Phys. Lett. Vol.22, 303 (1973)
[5] H. Amano, N. Sawaki, I. Askasi, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett. Vol.48, 353 (1986)
[6] H. Amano, M. Kitoh, K. Hiramastsu, N. Sawaki, and I. Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)”, Jpn. J. Appl. Phys. Vol.28, L2112 (1989)
[7] S. Nakamura, “GaN growth using GaN buffer layer”, Jpn. J. Appl. Phys. Vol. 30, L1705 (1991)
[8] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films”, Jpn. J. Appl. Phys. Vol. 31, L139 (1992)
[9] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high brightness InGaN/AlGaN double-heterostructure bule-light-emitting diodes”, Appl. Phys. Lett. Vol.64, 1687 (1994)
[10] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes”, Appl. Phys. Lett. Vol. 67, 1868 (1995)
[11] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. KiyoKu, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours”, Appl. Phys. Lett. Vol. 70, 1417 (1997)
[12] S. Nakamura, MRS BULLETIN, 37 (1998)
[13] M. A. Sanchez-Garcia, F. B. Naranjo, J. L. Pau, A. Jimenez, E. Calleja, and E. Munoz, “Ultraviolet electroluminescence in GaN/AlGaN single-heterojunction light-emitting diodes grown on Si(111)”, J. Appl. Phys. Vol. 87, 1569 (2000)
[14] H. Morkoc, “Nitride semiconductors and devices.” (1999)
[15] A. Rubio, J. L. Corkill, M. L. Cohen, E. L. Shirley, and S. G. Louie, “Quasiparticle band structure of AlN and GaN”, Phys. Rev. B Vol. 48, 11810 (1993)
[16] 晶體之結構與分析, 余樹楨著
[17] R. Yang, H. K. Fun, I. Ab. Rahman, and M. I. Saleh, “ Two phase refinements of the structures of α-Si3N4 and β-Si3N4 made from Rice Husk by Rietveld analysis”, Ceramics International Vol. 21, 137 (1995)
[18] Y. N Xu, W. Y. Ching, “Electronic structure and optical properties of α and β phases of silicon nitride, silicon oxynitride, and with comparison to silicon dioxide”, Phys. Rev. B Vol. 51, 17379 (1995)
[19] H. Ahn, C. L. Wu, S. Gwo, C. M. Wei, and Y. C. Chou, “Structure determination of the Si3N4/Si(111)-(8×8) surface: A combined study of Kikuchi electron holography, Scanning Tunneling Microscopy, and ab initio calculations”, Phys. Rev. Lett. Vol. 86, 2818 (2001)
[20] Y. N Xu, W. Y. Ching, “Electronic structure and optical properties of α and β phases of silicon nitride, silicon oxynitride, and with comparison to silicon dioxide”, Phys. Rev. B, Vol. 51, 17379 (1995)
[21] G. Zhai, J. Yang, N. Cue, and X.-S. Wang, “Surface structure of silicon nitride thin films on Si(111)”, Thin Solid Films Vol. 366, 121 (2000)
[22] C. L. Wu, J, L, Hsieh, H. D. Hsueh and S. Gwo, “Thermal nitridation of the Si(111)-(7×7) surface studied by scanning tunneling microscopy and spectroscopy”, Phys. Rev. B Vol. 65, 045309-1 (2002)
[23] X.-S. Wang, G. Zhai, J. Yang, L. Wang, Y. Hu, Z. Li, and J. C. Tang, “ Nitridation of Si(111)”, Surface Science Vol. 494, 83 (2001)
[24] R. Wolkow and Ph. Avouris, “Atom-Resolved Surface chemistry using Scanning Tunneling Microscopy”, Phys. Rev. Lett. Vol. 60, 1049 (1988)
[25] J. T. Torvik, J. I. Pankove, and B. Van Zeghbroeck, “GaN/SiC heterojunction bipolar transistors”, Solid-State Electronics Vol.44, 1229 (2000)
[26] P. Kung, A. Saxler, X. Zhang, D. Walker, T. C.Wang, I. Ferguson, and M. Razeghi, “High quality AIN and GaN epilayers grown on (00 • 1) sapphire, (100), and (111) silicon substrates”, Appl. Phys. Lett. Vol. 66, 2958 (1995)
[27] J. W. Yang, C. J. Sun, Q. Chen, M.Z. Anwar, M.S. Khan, S. A. Nikishin, G. A. Seryogin, G. A. Seryogin, A. V. Qsinsky, L. Chernyak, H. Temkin, C. Hu, and S. Mahajan, “High quality GaN—InGaN heterostructures grown on (111) silicon substrates”, Appl. Phys. Lett. Vol. 69, 3566 (1996)
[28] A. Strittmatter, D. Bimberg, A.Krost, J. Blasing, and P. Veit, “Structural investigation of GaN layers grown on Si(111) substrates using a nitridated AlAs buffer layer”, J. Crystal Growth Vol. 221, 293 (2000)
[29] Y. Nakada, and I. Aksenov, “GaN heteroepitaxial growth on silicon nitride buffer layers formed on Si (111) surfaces by plasma-assisted molecular beam epitaxy”, Appl. Phys. Lett. Vol. 73, 827 (1998)
[30] L. Wang, X. Lin, Y. Zan, J. Wang, D. Wang, D. Lu, and Z. Wang, “Wurtzite GaN epitaxial growth on a Si(001) substrate using γ-Al2O3 as an intermediate layer”, Appl. Phys. Lett. Vol. 72, 109 (1998)
[31] S. P. Murarak, C. C. Chang, and A. C. Adams, “Thermal nitridation of silicon in ammonia gas : composition and oxidation resisteance of the resulting films”. J. Electrochem. Soc., Vol. 129, 996 (1979).
[32] I. J. R Baumvol, F. C. Stedile, J. J. Ganem, S. Rigo, and I. Trimaille, “Mechanisms of thermal nitridation of silicon”, J. Electrochem. Soc., Vol. 142, 1205 (1995).
[33] R. M. C. de Almeida and I. J. R Baumvol, “Reaction-diffusion model for thermal growth of silicon nitride films on Si”, Phys.l Rev. B, Vol. 62, 16-255 (2000)
[34] Z. H. Loh and H. C. Kang, “Chemisorption of NH3 on Si (100) - (2 × 1): A study by first-principles ab initio and density functional theory”, Joural of Chemical Physics, Vol. 112, 2444 (2000)
[35] R. Miotto and G. P. Srivastave, “Dissociative adsorption of NH3 on Si(001)-(2×1)”, Phys. Rev. B, Vol. 58, 7944 (1998)
[36] G. L. Zhao and M. E. Bachlechner, “Electronic structure and charge transfer in α- and β-Si3N4 and at the Si (111) / Si3N4 (0001) interface”, Phys. Rev. B, Vol. 58, 1887 (1998)
[37] E. A. Khramtsova, A. A. Saranin, and V. G. Lifshits, “Formation of the Si (111) 8 x 8-N structure by reaction of NH3 with a Si (111) surface”, Surf. Sci. Vol. 280, L259 (1993)
[38] E. Bauer, Y. Wei, T. Müller, A. Pavlovska, and I. S. T. Tsong, “Reactive crystal growth in two dimensions: Silicon nitride on Si(111)”, Phys. Rev. B, Vol. 51, 17891 (1995)
[39] Y. Morita and H. Tokumoto, “Origin of the 8/3 x 8/3 superstructre in STM images of the Si (111)-8 x 8 : N surface”, Surf. Sci. Vol. 443, L1037 (1999)
[40] G. Dufour, F. Rochet, H. Roulet, and F. Sirotti, Surf. Sci. Vol.304, 33 (1994)
[41] J. Stober, B.Eisenhut, G. Rangelov, and Th. Fauster, Surf. Sci. Vol. 321, 111 (1994)
[42] G. -M. Rignanese and A. Pasquarello, “First-principles study of NH3 exposed Si(001)2×1: Relation between N 1s core-level shifts and atomic structure”, Appl. Phys. Lett. Vol. 76, 553 (2000)
[43] R. Kärcher, L. Ley, and R. L. Johnson, “Electronic structure of hydrogenated and unhydrogenated amorphous SiNx (0 <= x <= 1.6): A photoemission study”, Phys. Rev. B Vol. 30, 1896 (1994)
[44] J. W. Kim and H. W. Yeom, “Surface and interface structures of epitaxial silicon nitride on Si(111)”, Phys. Rev. B Vol. 67, 035304 (2003)
[45] H. Ishikawa, G. Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, and M. Umeno, “GaN on Si substrate with AlGaN/AlN intermediate layer”, Jpn. J. Appl. Phys. 38 L492 (1999)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top