(18.207.129.82) 您好!臺灣時間:2021/04/19 21:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃建盛
研究生(外文):Chien-Sheng Huang
論文名稱:覆晶技術中銲錫凸塊與鎳/銅底層金屬間之元素分佈與相關相變化行為探討
論文名稱(外文):Elemental Redistribution and Related Phase Transformation between Solder Bump and Ni/Cu UBM in Flip Chip Technology
指導教授:杜正恭杜正恭引用關係
指導教授(外文):Jenq-Gong Duh
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:132
中文關鍵詞:覆晶技術底層金屬相變化
外文關鍵詞:flip chip technologyUBMphase transformation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
覆晶技術(FCT)搭配球腳格狀陣列(BGA)的連接方式已經被廣泛的使用在現今的微電子封裝技術中。其中,凸塊底層金屬(UBM)的材料選擇成為最重要的議題之一。鎳基的凸塊底層金屬除了可與銲錫潤濕外亦可作為阻擋銅金屬擴散的擴散阻絕層。因此,受到業界或學界的注目。本研究利用顯微分析與詳細的定量分析來探討銲錫與鎳/銅凸塊底層金屬間的元素分佈情形與相關的相變化行為。
在迴銲的過程中發現:銲接反應會加速銅原子的擴散與介金屬化合物(IMC)的生成。銅原子擴散的通量約為1015~1016 atoms/cm2s。在一次迴銲後,銅原子穿過鎳層並溶於Ni3Sn4中而形成(Ni1-x, Cux)3Sn4。在不同鎳厚度的試片中,所量測到(Ni1-x, Cux)3Sn4的組成均相當均勻。在三次以上的迴銲後,銅原子更進一步的穿過(Ni1-x, Cux)3Sn4。當銅在錫銅鎳合金中的濃度超過0.6 wt.%時,另一個扇貝狀的介金屬化合物(Cu1-y, Niy)6Sn5開始生成。(Cu1-y, Niy)6Sn5生成的量與鎳層的厚度和迴銲的次數有關。其中,所量測到的y值約維持在0.4左右。而x值卻從0.02變化到0.35。這些介面生成物的元素分佈情形可利用錫銅鎳三元相圖加以解釋。此外,(Cu1-y, Niy)6Sn5生成的相關機制也是探討的重點之一。
在經過的適當蝕刻與試片處理後,介金屬化合物Ni3Sn4和Cu6Sn5的型態可以明顯的顯現。實驗發現:此二種介金屬化合物具有截然不同的型態。另外,在一次迴銲後,在錫銀系統中生成的(Ni, Cu)3Sn4較錫鉛系統中的具有較大的晶粒,導致銅原子擴散的通道減少。因此,在錫銀系統中,僅偵測到一層較厚的(Ni, Cu)3Sn4,並沒有發現(Cu, Ni)6Sn5。
凸塊強度與銲錫凸塊邊緣的元素分佈有著密不可分的關係。因此,在銲錫凸塊邊緣的介金屬化合物生長情形也是研究的方向之一。迴銲的過程中,在鎳/銅凸塊底層金屬的側邊僅發現(Cu1-y ,Niy)6Sn5的生成。然而,在經過高溫熱儲藏(150C,1000小時)後,除了(Cu1-y, Niy)6Sn5外,還偵測到另一個介金屬化合物(Cu1-z, Niz)3Sn。(Cu1-z, Niz)3Sn的生成是由於銲錫凸塊邊緣的錫被耗盡所致。另一方面,由於(Cu1-y, Niy)6Sn5生長快速,因此甚至可以在銲錫與凸塊底層金屬的介面中偵測到它的存在。

Flip chip technology with BGA interconnection has attracted a great deal of attention in today’s electronics packaging. One of the challenging issues is the material selection for under bump metallization (UBM). The Ni-based UBM acts as a wetting layer of solder and also as a diffusion barrier for Cu metallization. In this study, the elemental distribution and related phase transformation between solders and Ni/Cu UBM were investigated with the aid of microstructure evolution and deliberately quantitative analysis by an electron probe microanalyzer.
The soldering-induced Cu diffusion and intermetallic compound (IMC) formation were revealed. The atomic flux of Cu diffusion during reflow was in the order of 1015~1016 atoms/cm2s. After one reflow, Cu atoms diffused through electroplated Ni and dissolved into the previous formed IMC Ni3Sn4 to produce another layered IMC (Ni1-x, Cux)3Sn4. The composition of (Ni1-x, Cux)3Sn4 IMC was homogeneous in each joint despite of different Ni thickness. After more than three times reflow, Cu atoms further diffused through the boundaries of (Ni1-x, Cux)3Sn4. As the concentration of Cu in Sn-Cu-Ni alloy is greater than 0.6 wt.%, another scalloped IMC (Cu1-y, Niy)6Sn5 would form. The amounts of (Cu1-y, Niy)6Sn5 IMC formation could be associated to the Ni thickness and reflow times. The values of y were evaluated to remain around 0.4, however, the values of x varied from 0.02 to 0.35. The elemental distribution of IMC in the interface of the joint assembly was further correlated to the Ni-Cu-Sn ternary equilibrium. In addition, the mechanism of (Cu1-y, Niy)6Sn5 formation was also probed.
Through appropriate etching and sample preparation, IMCs of Ni3Sn4 and Cu6Sn5 were revealed with distinct morphologies in a solder/Ni-Cu UBM joint assembly. The grain size of (Ni, Cu)3Sn4 IMC formed in the Sn-Ag system after one reflow was larger than that in the Sn-Pb system, thus the pathways for Cu diffusion were reduced. As a result, only thicker (Ni, Cu)3Sn4 IMC was observed, and no (Cu, Ni)6Sn5 IMC could be detected between SnAg solder and Ni.
The elemental redistribution in the edge of the solder bump is crucial for its correlation with the bump strength. Hence, the IMC formation in the edge of solder bump between UBM and eutectic Sn-Pb solder was also discussed. During reflows, only (Cu1-y ,Niy)6Sn5 IMC was observed in the sideway of Ni/Cu UBM. After high temperature storage (HTS) at 150C for 1000 hours, both (Cu1-y, Niy)6Sn5 and (Cu1-z, Niz)3Sn were found in the sideway of Ni/Cu UBM. The (Cu1-z, Niz)3Sn IMC formed since Sn atoms were almost exhausted near the sideway of Ni/Cu UBM. Moreover, (Cu1-y, Niy)6Sn5 IMC was visible even in the interface of solder and UBM after HTS test due to the fast growth rate.

List of Tables........................................................................................... III
Figures caption....................................................................................... IV
Abstract................................................................................................... IX
Chapter I Introduction.......................................................................... 1
1.1 Background................................................................................. 1
1.2 Motivations and Goals in This Study.......................................... 2
Chapter II Literature Review............................................................... 7
2.1 Electronic Package...................................................................... 7
2.2 Flip Chip Technology.................................................................. 8
2.3 Solder Bump................................................................................ 9
2.3.1 Solder Materials................................................................ 9
2.3.2 SnPb Solder....................................................................... 10
2.3.3 Lead-Free Solder............................................................... 12
2.4 Under Bump Metallization.......................................................... 13
2.4.1 Cu-Based UBM................................................................. 14
2.4.2 Ni-Based UBM.................................................................. 15
2.4.2.1 Electroplated Ni....................................................... 15
2.4.2.2 Electroless Ni-P....................................................... 15
2.5 Metallurgical Reactions in solder joints...................................... 16
2.5.1 Metallurgical Reactions between Solders and Cu-Based
UBM................................................................................. 16
2.5.2 Metallurgical Reactions between Solders and Ni-Based
UBM................................................................................. 18
Chapter III Experimental Procedure................................................... 45
3.1 Fabrication of Solder Bump........................................................ 45
3.2 Solder Reflow and Heat Treatment............................................. 45
3.3 Sample Preparation..................................................................... 46
3.4 Characterization and Analysis..................................................... 47
3.4.1 Microstructure Evolution.................................................. 47
3.4.2 Composition Analysis....................................................... 47
Chapter IV Results and Discussion...................................................... 53
4.1 Effects of Ni Thickness and Reflow Times on Interfacial Reactions
between Ni/Cu UBM and Eutectic Sn-Pb Solder.............................. 53
4.2 Phase Equilibrium between Ni/Cu UBM and Eutectic SnPb Flip
Chip Solder Bumps........................................................................... 64
4.3 Soldering-Induced Cu Diffusion and Intermetallic Compound
Formation between Ni/Cu UBM and SnPb Solder........................... 80
4.4 Metallurgical Reaction of Sn-3.5Ag Solder and Sn-37Pb Solder
with Ni/Cu UBM............................................................................... 99
4.5 Interfacial Reactions and Compound Formation in the Edge of
PbSn Flip Chip Solder Bumps on Ni/Cu UBM................................ 110
Chapter V Conclusions.......................................................................... 120
References............................................................................................... 123

1. J. H. Lau, Flip chip technology, McGraw-Hill, New York, 1996.
2. D. S. Patterson, P. Eleniu and J. A. Leal, Adv. Electron. Pkg. 1 337 (1997).
3. C. S. Chang, A. Oscilowski and R. C. Bracken, “Future challenges in electronics packaging” IEEE Circuits Devices Mag., 14, 45 (1998).
4. M. E. Loomans, S. Vaynman, G. Ghosh and M. E. Fine, “Investigation of multi-component lead-free solders” J. Electron. Mater. 23, 741 (1994).
5. A. A. Liu, H. K. Kim, K. N. Tu and P. A. Totta, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films” J. Appl. Phys. 80, 2774 (1996).
6. H. K. Kim, K. N. Tu and P. A. Totta, “Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joint on Si wafer” Appl. Phys. Lett. 68, 2204 (1996).
7. C. E. Ho, R. Zheng, G. L. Luo, A. H. Lin and C. R. Kao, “Formation and resettlement of (AuxNi1-x)Sn4 in solder joints of ball-grid-array packages with the Au/Ni surface finish” J. Electron. Mater. 29 1175 (2000).
8. C. E. Ho, L. C. Shiau and C. R. Kao, “Inhibiting the formation of (Au1-xNix)Sn4 and reducing the consumption of Ni metallization in solder joints” J. Electron. Mater. 31 1264 (2002).
9. K. L. Lin and Y. C. Liu, “Reflow and property of Al/Cu/electroless Nickel/Sn-Pb solder bumps” IEEE Trans. on Adv. Packag. 22, 575 (1999).
10. J. Y. Park, C .W. Yang, J. S. Ha, C. U. Kim, E. J. Kwon, S. B. Jung and C. S. Kang, “Investigation of interfacial reaction between Sn-Ag eutectic solder and Au/Ni/Cu/Ti thin film metallization”, J. Electron. Mater. 30, 1165 (2001).
11. J. W. Jang, P. G. Kim, K. N. Tu, D. R. Frear and P. Thompson, “Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology ” J. Appl. Phys. 85, 8456 (1999).
12. B. L. Young and J. G. Duh, “Interfacial reaction and microstructural evolution for electroplated Ni and electroless Ni in the under bump metallurgy with 42Sn-58Bi solder during annealing” J. Electron. Mater. 30 878 (2001).
13. S. Bader, W. Gust and H. Hieber, “Rapid formation of intermetallic compounds by interdiffusion in the Cu-Sn and Ni-Sn systems”, Acta Metall. Mater. 43, 329 (1995)
14. S. K. Kang, R. S. Rai and S. Purushothaman, “Interfacial reactions during soldering with lead-tin eutectic and lead (Pb)-free, tin-rich solders” J. Electron. Mater. 25, 1113 (1996)
15. C. E. Ho, Y. M. Chen and C. R. Kao, “Reaction kinetics of solder-balls with pads in BGA packages during reflow soldering” J. Electron. Mater. 28, 1231 (1999).
16. P. G. Kim, J. W. Jang, T. Y. Lee, K. N. Tu, “Interfacial reaction and wetting behavior in eutectic SnPb solder on Ni/Ti thin films and Ni foils” J. Appl. Phys. 86 6746 (1999).
17. T. M. Korhonen, P. Su, S. J. Hong, M. A. Korhonen and C. Y. Li, “Development of under bump metallizations for flip chip bonding to organic substrates” J. Electron. Mater. 28, 1146 (1999).
18. R. R. Tummala and E. J. Rymaszewski, Microelectronics packaging handbook, 2nd edition, Van Nostrand Reihold, New York, 1997.
19. J. H. Lau, Ball grid array technology, McGraw-Hill, New York, 1995.
20. P. A. Totta, R. P. Sopher, “SLT device metallurgy and its monolithic extensions” IBM J. Res. Develop. 13, 226 (1969).
21. L. F. Miller, “Controlled collapse reflow chip joining” IBM J. Res. Develop. 13, 239 (1969).
22. J. H. Lau and S. W. R. Lee, Chip scale package, CSP: Design, Materials, Process and Applications, McGraw-Hill, New York, 1999.
23. K. N. Tu and K. Zeng, “Tin-lead (SnPb) solder reaction in flip chip technology” Mater. Sci. Eng. R 34, 1 (2001).
24. C. A. Harper, Electronic packaging and interconnection handbook, 3rd edition, McGraw-Hill, New York, 2000.
25. M. Abtew and G. Selvaduray, “Lead-free solders in microelectronics” Mater. Sci. Eng. R 27, 95 (2001).
26. J. W. Morris, Jr., J. L. Freer Goldstein and Z. Mei, “Microstructure and mechanical properties of Sn-In and Sn-Bi solder” JOM 45, 25 (1993).
27. R. E. Reed-Hill, Physical metallurgy principles, 3rd edition, PWS, Boston, 1994.
28. W. R. Lewis, Notes on soldering, Tin Research Institute, 66, 1961.
29. K. Zeng and K. N. Tu, “Six cases of reliability study of Pb-free solder joints in electronic packaging technology” Mater. Sci. Eng. R 38, 55 (2002).
30. S. Topani, S. Gopakumar, P. Borgesen and K. Srihari, “Reliability of lead-free solder interconnections-A review”, 2002 annual reliability and maintainability symposium, (Piscataway, NJ: IEEE, 2002), pp.423.
31. J. S. Hwang, Modern solder technology for competitive electronics manufacturing, McGraw-Hill, New York, 1996.
32. K. Suganuma, “Interface phenomena in lead-free soldering” Environmentally Conscious Design and Inverse Manufacturing, 620 (1999).
33. H. D. Blair, T. Y. Pan and J. M. Nicholson, “Intermetallic compound growth on Ni, Au/Ni and Pd/Ni substrates with Sn/Pb, Sn/Ag and Sn solders”, Electronic Components and Technology Conference, 1998, pp.259-267.
34. E. P. Wood and K. L. Nimmo, “In search of lead-free electronic solders” J. Electron. Mater. 23, 709 (1994).
35. F. Hua and J. Glazer, “Lead-free solders for electronic assembly, design and reliability of solders and solder interconnections” Mine. Metal. Mat. Socieity, 65 (1997).
36. I. Artaki, D. W. Finley, A. M. Jackson, U. Ray and P. T. Vianco, “Wave soldering with lead-free solders” Proceedings of the Technical Program on Advanced Electronics Manufacturing Technologies, 1995, pp.495-510.
37. N. C. Lee, J. Slattery, J. Sovinsky, I. Artaki and P. Vianco, “A novel lead-free solder replacement” Circuit Assembly 6, 36 (1995).
38. J. Glazer, “Metallurgy of low temperature Pb-free solders for electronic assembly” Int. Mater. Rev. 40, 65 (1995).
39. H. Kabassis, J. W. Rytter and W. C. Winegard, “Phase relationship in Bi-In-Sn alloy systems” Mater. Sci. Technol. 2, 985 (1986).
40. C. Chen, C. E. Ho, A. H. Lin, G. L. Luo and C.R. Kao, “Long-term aging study on the solid-state reaction between 58Bi42Sn solder and Ni substrate”, J. Elec. Mater. 29, 1200 (2000).
41. M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, “New Pb-free solder alloy with superior mechanical properties” Appl. Phys. Lett. 63, 15, (1993).
42. R. G. Werner, D. R. Frear, J. DeRosa and E. Sorongon, “Flip chip packaging” 1999 Int. Symp. on Advanced Packaging Materials (Braselton, GA, USA, 1999), pp. 246-251.
43. F. A. Lowenheim, Modern electroplating, 2nd edition, Wiley, New York, 1974.
44. P. Nash, Phase diagrams of binary nickel alloys, ASM International, 1991.
45. R. C. Agarwala and S. Ray, “Variation of structure in electroless Ni-P films with phosphorous content” Z. Metallkd. 79, 472 (1988).
46. J. H. Yeh, “Interfacial reactions and wetting property between electroless Ni in the under bump metallurgy (UBM) and Sn-37Pb solder”, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2000).
47. S. V. S. Tyagi, V. K. Tondon, and S. Ray, “Study of the crystallization behavior of electroless Ni-P films by electron and x-ray diffraction” Z. Metallkd. 76, 492 (1985).
48. K. Zeng, J. K. Kivilahti, “Use of multicomponent phase diagrams for predicting phase evolution in solder/conductor systems” J. Electron. Mater. 30, 35 (2001).
49. T. B. Massalski, Binary alloy phase diagram, ASM, Metals Park, OH, 1990, p. 1481.
50. G. Z. Pan, A. A. Liu, H. K. Kim, K. N. Tu and Paul A. Totta, “Microstructures of phased-in Cr—Cu/Cu/Au bump-limiting metallization and its soldering behavior with high Pb content and eutectic PbSn solders” Appl. Phys. Lett. 71, 2946 (1997).
51. C. Y. Liu, K. N. Tu, T. T. Sheng, C. H. Tung, D. R. Frear and P. Elenius, “Electron microscopy of interfacial reaction between eutectic SnPb and Cu/Ni(V)/Al thin film metallization” J. Appl. Phys. 87, 750 (2000).
52. M. Li, F. Zhang, W.T. Chen, K. Zeng, K. N. Tu, H. Balkan and P. Elenius, “Interfacial microstructure evolution between eutectic SnAgCu solder and Al/Ni(V)/Cu thin film” J. Mater, Res. 17, 1612 (2002).
53. P.W. Dehaven, “The reaction kinetics of liquid 60/40 Sn/Pb solder with copper and nickel: a high temperature X-ray diffraction study”, in Proceeding of the Electronic Packaging Materials Science (Boston, MA USA, Materials Research Society, USA, 1984) pp.123-128.
54. G. Ghosh, “Kinetics of interfacial reaction between eutectic SnPb solder and Cu/Ni/Pd metallizations”, J. Electron. Mater. 28, 1238 (1999).
55. D. Frear, F. Hosking, P. Vianco, “Mechanical behavior of solder joint interfacial intermetallics”, in: Proceedings of the Materials Developments in Microelectronic Packing: Performance and Reliability, ( Montreal, Que., Canada, ASM International, Materials Park, OH, USA, 1991) pp.229-240.
56. W.G. Bader, “Dissolution of Au, Ag, Pd, Pt, Cu, and Ni in a molten tin-lead solder” Weld. J. Res. Suppl. 28, 551s (1969).
57. C. Y. Lee and K. L. Lin, “The interaction kinetics and compound formation between electroless Ni-P and solder” Thin Solid Films 249, 201 (1994).
58. C. Y. Lee and K. L. Lin, “Preparation of solder bumps incorporating electroless nickel-boron deposit and investigation on the interfacial interaction behavior and wetting kinetics” J. Mater. Sci.: Mater. Electron. 8, 377 (1997).
59. J. W. Jang, P. G. Kim, K. N. Tu, D. R. Frear and P. Thompson, “Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology” J. Appl. Phys. 85, 8456 (1999).
60. Y. D. Jeon, K. W. Paik, K. S. Bok, W. S. Choi and C. L. Cho, “Studies on Ni-Sn Intermetallic compound and P-rich Ni layer at the electroless nickel UBM-solder interface and their effects on flip chip solder joint reliability” in Proceedings of the 51th Electronic Components & Technology Conference (Orlando, Fl, Piscataway, USA, IEEE, 2001) pp. 1326-1332.
61. K. C. Huang, Y. C. Chan, C. W. Tang and H. C. Ong, “Correlation between Ni3Sn4 intermetallics and Ni3P due to solder reaction-assisted crystallization of electroless Ni-P metallization in advanced packages” J. Mater. Res. 15, 2534 (2000).
62. K. C. Huang and Y. C. Chan, “Study of Ni3P growth due to solder reaction-assisted crystallization of electroless Ni-P metallization” J. Mater. Sci. Lett. 19, 1755 (2000).
63. P. Liu, Z. Xu, J. K. Shang, “Thermal stability of electroless-Ni/solder interfaces”, Metall. Mater. Trans. A 31, 2857 (2000).
64. C. S. Huang, J. H. Yeh, B. L. Young and J. G. Duh, “Phenomena of electroless Ni-P (EN) and intermetallic compound stripping and dissolving in Sn-Bi and Sn-Pb solder joints with Au/EN/Cu metallization” J. Electron. Mater. 31, 1230 (2002).
65. S.K. Kang, D.Y. Shih, K. Fogel, P. Lauro, M.J. Yim, G. Advocate, M. Griffin, C. Goldsmith, D.W. Henderson, T. Gosselin and D. King, J. Konrad, A. Sarkhel and K.J. Puttlitz, “Interfacial reaction studies on lead (Pb)-free solder alloys”, Electronic Components and Technology Conference, 2001, pp.448-454.
66. J. W. Jang, D. R. Frear, T. Y. Lee and K. N. Tu, “Morphology of interfacial reaction between lead-free solders and electroless Ni-P under bump metallization” J. Appl. Phys. 88, 6359 (2000).
67. S. Ahat, L. Du, M. Sheng, L. Luo, W. Kempe and J. Freytag, “Effect of aging on the microstructure and shear strength of SnPbAg/Ni-P/Cu and SnAg/Ni-P/Cu solder joints”, J. Electron. Mater. 29, 1105 (2000).
68. T. B. Massalski, Binary alloy phase diagram, ASM, Metals Park, OH, 1990, p. 96.
69. J. I. Goldstein, Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, New York, 1981.
70. G. Ghosh, “Interfacial microstructure and the kinetics of interfacial reaction in diffusion couples between Sn-Pb solder and Cu/Ni/Pd metallization” Acta Mater. 48, 3719 (2000).
71. C. M. Chen and S. W. Chen, “Electromigration effect upon the Sn-0.7 wt% Cu/Ni and Sn-3.5 wt% Ag/Ni interfacial reactions” J. Appl. Phys. 90, 1208 (2001).
72. W. T. Chen, C. E. Ho and C. R. Kao, “Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders” J. Mater. Res. 17, 263 (2002).
73. T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams, ASM Int., Materials Park, Ohio, 1990, pp. 1442.
74. T. B. Massalski; H. Okamoto, P. R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams ASM Int., Materials Park, Ohio, 1990, pp. 863.
75. H. K. Kim and K. N. Tu, “Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening” Phys. Rev. B 53, 16027 (1996).
76. Y. C. Hsu and J. G .Duh, “Diffusion Behavior of Cu in Cu/Electroless Ni and Cu/Electroless Ni/Sn-37Pb Solder Joint in Flip Chip Technology” J. Electron Mater, in press.
77. C. H. Lin, S. W. Chen and C. H. Wang, “Phase Equilibria and Solidification Properties of Sn-Cu-Ni Alloys” J. Electron. Mater. 31, 907 (2002).
78. M. Li, F. Zhang, W. T. Chen, K. Zeng, K. N. Tu, H. Balkan and P. Elenius, “Interfacial microstructure evolution between eutectic SnAgCu solder and Al/Ni(V)/Cu thin films” J. Mater. Res. 17, 1612 (2002).
79. K. Zeng, V. Vuorinen, and J.K. Kivilahti, “Intermetallic reactions between lead-free SnAgCu solder and Ni(P)/Au surface finish on PWBs” in Proceedings of 51st Electronic Components & Technology Conference (IEEE, Piscataway, NJ, 2001), pp. 685.
80. C. E. Ho, R. Y. Tsai, Y. L. Lin and C.R. Kao, “Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni” J. Electron Mater. 31, 584 (2002).
81. W. H. Tao, C. Chen, C. E. Ho, W. T. Chen and C. R. Kao, “Selective interfacial reaction between Ni and eutectic BiSn lead-free solder” Chem. Mater. 13, 1051 (2001).
82. W. K. Choi, S. Y. Jang, J. H. Kim, K. W. Paik and H. M. Lee, “Grain morphology of intermetallic compounds at solder joints” J. Mater. Res. 17, 597 (2002).
83. H. baker, ASM Handbook v.3: Alloy Phase Diagrams, ASM Int., Materials Park, Ohio, 1992, pp. 1992.
84. F. H. Hayes, H. L. Lukas, G. Effenberg and G. Petzow, Z. Metalld. “A thermodynamic optimization of the Cu-Ag-Pb system” 77, 749 (1986).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔