(34.204.185.54) 您好!臺灣時間:2021/04/16 18:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:姜懷之
研究生(外文):Huai-chih Chiang
論文名稱:四氯化碳在quinone類化合物為電子傳遞物質環境中還原脫氯反應研究
論文名稱(外文):Reductive Dechlorination of Carbon Tetrachloride in Homogenous Solutions using Quinone Moiety as Electron Mediator
指導教授:董瑞安
指導教授(外文):Ruey-an Doong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:原子科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:191
中文關鍵詞:quinone類化合物電子傳遞物質還原脫氯反應四氯化碳
外文關鍵詞:carbon tetrachloridequinone moietiesmercaptoquinonesemiquinoneelectron mediatorreductive dechlorination
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:2
Quinone類化合物是一種普遍存在自然環境中的電子傳遞物質,有助於電子從還原劑上轉移至諸如四氯化碳等氯化碳氫化合物以加速其在還原態環境中的降解。在本研究中,針對五種quinone類化合物於硫環境下對四氯化碳的還原脫氯反應進行探討,結果顯示添加quinone類化合物能加速還原脫氯的反應速率達2至40倍,且反應速率的增加與使用的quinone類化合物具有相當的依存性,由快至慢依次為NQ > BQ >> AQDS > MQ ~ LQ。進一步分析各quinone化合物於硫化氫環境中的光譜變化,可推論quinone類化合物會因化學結構的不同而產生不同的活性物質以利電子的傳遞;對BQ及NQ而言,在與硫化氫共存時會因加成反應而生成反應性強的硫化quinone化合物。而AQDS則具有極低的氧化還原電位,會在硫化氫環境中生成quinone自由基型態而加速氯化有機物的還原降解反應。LQ及MQ則會在相同環境下生成還原態quinone化合物。另外,研究也發現pH值會大幅影響quinone類化合物對於還原脫氯反應的速率。有鑑於自然環境中腐植質含有許多的quinone官能基,因此本研究中亦選用兩種腐植酸探討其quinone官能基與還原脫氯反應的關聯性,在添加腐植酸的實驗中,四氯化碳的分解效率可提升1.6至2.4倍,配合光譜分析的結果,推論這兩種腐植酸皆是以還原態quinone化合物作為活性電子傳遞物質。

The dechlorination of carbon tetrachloride (CT) in homogeneous aqueous solutions containing quinone compounds as electron mediators and thiol compounds as bulk reductants was investigated. The use of thiol compounds including sodium hydrosulfide and cysteine as bulk reductant can effectively dechlorinate CT. The dechlorination of CT followed pseudo first-order kinetics and the pseudo first-order rate constant (kobs) was 0.051 d-1 with 5 mM NaHs and 0.009 d-1 with cysteine. Addition of quinone compounds including AQDS, benzoquinone (BQ), naphthoquinone (NQ), lawsone (LQ) and menadione (MQ) could significantly increase the rate and efficiency of CT dechlorination. The enhanced effect followed the order of NQ > BQ >> AQDS > MQ~LQ. A 2- to 40-fold increase in kobs relative to the solutions in the absence of quinone compounds was observed. Spectroscopic results including EPR, FTIR, UV-Vis and LC-MS showed that the selected quinone compounds can form various active electron mediators for electron transfer and can be categorized into three groups. The first group included BQ and NQ that could produce mercaptoquinone as active redox mediators. The second one included AQDS and the quinone moiety can be reduced to semiquinones. Moreover, lawsone and menadione can be reduced to hydroquinone by thiol compound to slightly enhance the dechlorination efficiency of CT. Environmental factors such as pH value, concentrations of thiol and quinone compounds can significantly influence the dechlorination efficiency and the rate of CT and exhibited positive correlations between the kobs for CT dechlorination and environmental factors. Moreover, two humic acids, Aldrich and Yang-ming mountain humic acid were shown to be reduced to hydroquinone moieties as active electron mediators by hydrosulfide ion and the kobs for CT dechlorination were 1.6 — 2.4 times higher than that without humic acid. Since humic substances contain large quinone moiety and sulfur compounds and are abundant under anaerobic conditions, results obtained in this study indicate the potentials of utilizing humic substances for effective electron mediators.

謝誌 i
中文摘要 ii
Abstract iii
Content Index v
Table Index viii
Figure Index x
Chapter 1. Introduction and motivation 1
1-1 Motivation 1
1-2 Objective 3
Chapter 2. Background and theory 6
2-1 Physicochemical properties of chlorinated hydrocarbons 6
2-2 Physicochemical properties of quinone compounds 6
2-2-1 The redox cycling property of quinone compounds 11
2-2-2 The chemistry of semiquinone 16
2-2-2-1 Determine radical by EPR 23
2-2-3 The reaction of nucleophilc molecules and quinones 26
2-3 The reductive degradation mediated by quinone compounds 28
2-3-1 Quinone moieties in humic substances 35
2-3-2 Reduction of quinone compounds 37
2-3-3 The reductive degradation of priority pollutants using quinones 38
2-3-3-1 The pH value 42
2-3-3-2 The redox potential 44
2-3-3-3 The semiquinone radical 46
2-4 Mechanism for dechlorination of chlorinated hydrocarbon by quinone compounds 46
Chapter 3. Materials and methods 51
3-1 Research design 51
3-2 Chemicals 53
3-3 Experimental procedures 53
3-3-1 Preparation of anoxic solution 53
3-3-2 Effect of bulk reductants on CT degradation 57
3-3-3 Effect of quinone compounds on CT degradation 57
3-3-4 Effect of humic acids on CT degradation 62
3-4 Analytical methods 62
3-4-1 Analysis of carbon tetrachloride and the intermediates 62
3-4-2 Production of free radicals 65
3-4-3 Characterization of the functional group change 66
3-4-3-1 Characterization using UV-visible 66
3-4-3-2 Identification of the function group by FTIR 66
3-4-3-3 Analysis of the intermediates by LC-MS 67
3-4-3-4 Charge distributions using program simulation 67
Chapter 4. Results and discussion 68
4-1 Effect of reductants on CT dechlorination without mediator 68
4-2 Effect of quinone compound on CT dechlorination 70
4-3 The spectroscopic study on the effect of quinone compounds 80
4-3-1 EPR spectra 87
4-3-2 UV-Visible spectra 93
4-3-3 FTIR spectra 102
4-3-4 LC-MS spectra 109
4-3-5 Summarization 114
4-4 The effect of environmental parameters on NaHS-quinone remediation of CT 119
4-5 The application of quinone moieties on humic acid 134
Chapter 5. Conclusions 140
References 145
Appendix A. EPR spectra 152
Appendix B. UV-Visible spectra 161
Appendix C. FTIR spectra 167
Appendix D. Humic acid spectra 171
Appendix E. Derivation of equation 2-8, 2-15 and 2-16. 175

Adriaens, P., Chang, P. R. and Barkovskii, A. L. Dechlorination of PCDD/F by organic and inorganic electron transfer molecules in reduced environments. Chemosphere, 1996, 32, 433-441.
Amonette, J. E., Workman, D. J., Kennedy, D. W., Fruchter, J. S. and Gorby, Y. A. Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environmental Science & Technology, 2000, 34, 4606-4613.
Baeseman, J. L. and Novak, P. J. Effects of various environmental conditions on the transformation of chlorinated solvents by Methanosarcina thermophila cell exudates. Biotechnology and Bioengineering, 2001, 75, 634-641.
Barkovskii, A. L. and Adriaens, P. Impact of humic constituents on microbial dechlorination of polychlorinated dioxins. Environmental Toxicology and Chemistry, 1998, 17, 1013-1020.
Berger, S., Hertl, P. and Rieker, A. Physical and chemical analysis of quinones: The chemistry of quinonoid compounds;
Rappoport, Z. and Patai, S., Eds.; John Wiley & sons: Chichester ; New York, 1987; pp. 29-86.
Buschmann, J., Angst, W. and Schwarzenbach, R. P. Iron porphyrin and cysteine mediated reduction of ten polyhalogenated methanes in homogeneous aqueous solution: Product analyses and mechanistic considerations. Environmental Science & Technology, 1999, 33, 1015-1020.
Cervantes, F. J., van der Zee, F. P., Lettinga, G. and Field, J. A. Enhanced decolourisation of acid orange 7 in a continuous UASB reactor with quinones as redox mediators. Water Science and Technology, 2001, 44, 123-128.
Chambers, J. Q. Electrochemistry of quinones: The chemistry of quinonoid compounds; Rappoport, Z. and Patai, S., Eds.; John Wiley & sons: Chichester ; New York, 1987; pp. 719-757.
Collins, R. and Picardal, F. Enhanced anaerobic transformations of carbon tetrachloride by soil organic matter. Environmental Toxicology and Chemistry, 1999, 18, 2703-2710.
Curtis, G. P. and Reinhard, M. Reductive dehalogenation of hexachlorethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic-acid. Environmental Science & Technology, 1994, 28, 2393-2401.
de Best, J. H., Hunneman, P., Doddema, H. J., Janssen, D. B. and Harder, W. Transformation of carbon tetrachloride in an anaerobic packed-bed reactor without addition of another electron donor. Biodegradation, 1999, 10, 287-295.
Deiana, S., Gessa, C., Manunza, B., Rausa, R. and Solinas, V. Iron(Iii) reduction by natural humic acids - a potentiometric and spectroscopic study. European Journal of Soil Science, 1995, 46, 103-108.
Depew, M. C. and Wan, J. K. S. Quinhydrones and semiquinones: The chemistry of quinonoid compounds; Rappoport, Z. and Patai, S., Eds.; John Wiley & sons: Chichester ; New York, 1987; pp. 963-1018.
Doong, R. A. and Wu, S. C. Enhanced biodegradation of carbon tetrachloride by the supplement of substrate and mineral ions under anaerobic condition. Water and Environment Research, 1995, 67, 276-281.
Dunnivant, F. M., Schwarzenbach, R. P. and Macalady, D. L. Reduction of substituted nitrobenzenes in aqueous-solutions containing natural organic-matter. Environmental Science & Technology, 1992, 26, 2133-2141.
Field, J. A., Cervantes, F. J., van der Zee, F. P. and Lettinga, G. Role of quinones in the biodegradation of priority pollutants: a review. Water Science and Technology, 2000, 42, 215-222.
Francioso, O., Ciavatta, C., Sanchez-Cortes, S., Tugnoli, V., Sitti, L. and Gessa, C. Spectroscopic characterization of soil organic matter in long-term amendment trials. Soil Science, 2000, 165, 495-504.
Fu, Q. S., Barkovskii, A. L. and Adriaens, P. Reductive transformation of dioxins: An assessment of the contribution of dissolved organic matter to dechlorination reactions. Environmental Science & Technology, 1999, 33, 3837-3842.
Garrett, R. and Grisham, C. M. Biochemistry; Saunders College Pub.: Fort Worth, 1999.
Geimer, J. and Beckert, D. The FT-EPR spectra of the anthraquinone-2,6-disulfonic acid radicals as probe for local
proton concentrations in electron transfer reactions. Applied
Magnetic Resonance, 2000, 18, 505-513.
Glaus, M. A., Heijman, C. G., Schwarzenbach, R. P. and Zeyer, J. Reduction of nitroaromatic compounds mediated by streptomyces sp. Exudates. Applied and Environmental Microbiology, 1992, 58, 1945-1951.
Gobbels, F. J. and Puttmann, W. Structural investigation of isolated aquatic fulvic and humic acids in seepage water of waste deposits by pyrolysis gas chromatography mass spectrometry. Water Research, 1997, 31, 1609-1618.
Hacherl, E. L., Kosson, D. S., Young, L. Y. and Cowan, R. M. Measurement of Iron(III) bioavailability in pure iron oxide minerals and soils using anthraquinone-2,6-disulfonate oxidation. Environmental Science & Technology, 2001, 35, 4886-4893.
Hernandez, M. E. and Newman, D. K. Extracellular electron transfer. Cellular and Molecular Life Sciences, 2001, 58, 1562-1571.
Jezierski, A., Czechowski, F., Jerzykiewicz, M., Chen, Y. and Drozd, J. Electron paramagnetic resonance (EPR) studies on stable and transient radicals in humic acids from compost, soil, peat and brown coal. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2000, 56, 379-385.
Keck, A., Klein, J., Kudlich, M., Stolz, A., Knackmuss, H. J. and Mattes, R. Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6. Applied and Environmental Microbiology, 1997, 63, 3684-3690.
Korshin, G. V., Li, C. W. and Benjamin, M. M. Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory. Water Research, 1997, 31, 1787-1795.
Krone, U. E., Laufer, K., Thauer, R. K. and Hogenkamp, H. P. C. Coenzyme-F430 as a possible catalyst for the reductive dehalogenation of chlorinated-C1 hydrocarbons in methanogenic bacteria. Biochemistry, 1989, 28, 10061-10065.
Kudlich, M., Keck, A., Klein, J. and Stolz, A. Localization of the enzyme system involved in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction. Applied and Environmental Microbiology, 1997, 63, 3691-3694.
Larson, R. A. and Cervini-Silva, J. Dechlorination of substituted trichloromethanes by an iron(II) porphyrin. Environmental Toxicology and Chemistry, 2000, 19, 543-548.
Lopez, M., Mendez, J., Ferrer, A., Guevara, N. and Alegria, A. Thermodynamics of semiquinone disproportionation. Abstracts of Papers of the American Chemical Society, 1996, 211, 403-Ched.
Lovley, D. R., Coates, J. D., BluntHarris, E. L., Phillips, E. J. P. and Woodward, J. C. Humic substances as electron acceptors for microbial respiration. Nature, 1996, 382, 445-448.
Lovley, D. R., Fraga, J. L., Blunt-Harris, E. L., Hayes, L. A., Phillips, E. J. P. and Coates, J. D. Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochimica Et Hydrobiologica, 1998, 26, 152-157.
Ma, H. Z., O'Loughlin, E. J. and Burris, D. R. Factors affecting humic-nickel complex mediated seduction of trichloroethene in homogeneous aqueous solution. Environmental Science & Technology, 2001, 35, 717-724.
Nevin, K. P. and Lovley, D. R. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Applied and Environmental Microbiology, 2000, 66, 2248-2251.
Nurmi, J. T. and Tratnyek, P. G. Electrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles. Environmental Science & Technology, 2002, 36, 617-624.
Olk, D. C., Brunetti, G. and Senesi, N. Decrease in humification of organic matter with intensified lowland rice cropping: A wet chemical and spectroscopic investigation. Soil Science Society of America Journal, 2000, 64, 1337-1347.
O'Loughlin, E. J., Burris, D. R. and Delcomyn, C. A. Reductive dechlorination of trichloroethene mediated by humic-metal complexes. Environmental Science & Technology, 1999, 33, 1145-1147.
Pedersen, J. A. CRC handbook of EPR spectra from quinones and quinols; CRC Press: Boca Raton, Fla., 1985.
Perlinger, J. A., Angst, W. and Schwarzenbach, R. P. Kinetics of the reduction of hexachloroethane by juglone in solutions containing hydrogen. Environmental Science & Technology, 1996, 30, 3408-3417.
Perlinger, J. A., Buschmann, J., Angst, W. and Schwarzenbach, R. P. Iron porphyrin and mercaptojuglone mediated reduction of polyhalogenated methanes and ethanes in homogeneous aqueous solution. Environmental Science & Technology, 1998, 32, 2431-2437.
Perlinger, J. A., Kalluri, V. M., Venkatapathy, R. and Angst, W. Addition of hydrogen sulfide to juglone. Environmental Science & Technology, 2002, 36, 2663-2669.
Roberts, A. L., Sanborn, P. N. and Gschwend, P. M. Nucleophilic-substitution reactions of dihalomethanes with hydrogen-sulfide species. Environmental Science & Technology, 1992, 26, 2263-2274.
Rappoport, Z. and Patai, S. The Chemistry of the quinonoid compounds; Wiley: Chichester ; New York, 1987.
Rau, J., Knackmuss, H. J. and Stolz, A. Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environmental Science & Technology, 2002, 36, 1497-1504.
Roginsky, V. A., Pisarenko, L. M., Bors, W. and Michel, C. The kinetics and thermodynamics of quinone-semiquinone-hydroquinone systems under physiological conditions. Journal of the Chemical Society-Perkin Transactions 2, 1999, 871-876.
Schwarzenbach, R. P., Stierli, R., Lanz, K. and Zeyer, J. Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous-solution. Environmental Science & Technology, 1990, 24, 1566-1574.
Scott, D. T., McKnight, D. M., Blunt-Harris, E. L., Kolesar, S. E. and Lovley, D. R. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environmental Science & Technology, 1998, 32, 2984-2989.
Struyk, Z. and Sposito, G. Redox properties of standard humic acids. Geoderma, 2001, 102, 329-346.
Thomson, R. H. Naturally occurring quinones III : recent advances; Chapman and Hall: London ; New York, 1987.
Tratnyek, P. G. and Macalady, D. L. Abiotic reduction of nitro aromatic pesticides in anaerobic laboratory systems. Journal of agricultural and food chemistry, 1989, 37, 248-254.
Trumpower, B. L. Function of quinones in energy conserving systems; Academic: New York, 1982.
van der Zee, F. P., Bouwman, R. H. M., Strik, D. P. B. T. B., Lettinga, G. and Field, J. A. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnology and Bioengineering, 2001, 75, 691-701.
van der Zee, F. P., Lettinga, G. and Field, J. A. The role of (auto)catalysis in the mechanism of an anaerobic azo reduction. Water Science and Technology, 2000, 42, 301-308.
Van Eekert, M. H. A., Schroder, T. J., Stams, A. J. M., Schraa, G. and Field, J. A. Degradation and fate of carbon tetrachloride in unadapted methanogenic granular sludge. Applied and Environmental Microbiology, 1998, 64, 2350-2356.
Wade, L. G., Jr. Organic chemistry; Prentice-Hall, Inc.: Englewood Cliffs, New Jersey, 1995.
Weerasooriya, R. and Dharmasena, B. Pyrite-assisted degradation of trichloroethene (TCE). Chemosphere, 2001, 42, 389-396.
Wertz, J. E. and Bolton, J. R. Electron spin resonance:/ elementary theory and practical applications; McGraw-Hill: Chapman and Hall ; New York, 1986.
Zhou, J. K. and Rieker, A. Electrochemical and spectroscopic properties of a series of tert-butyl-substituted para-extended quinones. Journal of the Chemical Society-Perkin Transactions 2, 1997, 931-938.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔