跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/13 18:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡欣昌
研究生(外文):Hsin-Chang Tsai
論文名稱:利用微機械結構萃取薄膜材料機械性質
論文名稱(外文):Characterization of Mechanical Properties of Thin films Using Micromachined Structures
指導教授:方維倫
指導教授(外文):Weileun Fang
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:141
中文關鍵詞:微機電系統機械性質微機械結構測試鍵
外文關鍵詞:MEMSMechanical propertiesMicromachined structresTest key
相關次數:
  • 被引用被引用:10
  • 點閱點閱:521
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:2
微機電系統(MEMS)包含微機械結構、微感測器與微致動器三大領域。由於微機械加工製造技術不斷地進步,使得各領域元件的發展漸趨成熟。然而微機電系統元件的機械性能表現除取決於機構設計及製程研發外,另外還有一項常被忽略但卻是非常重要的影響因素 — 薄膜材料的機械性質,如果無法精確掌握薄膜材料的機械性質,那麼所製造出來的微機電系統元件,其機械行為將因為機械性質的不確定性而與原先設計有著完全不同的表現﹔是故,一套簡單且精確的薄膜機械性質萃取技術對於系統元件設計是非常重要的。有鑑於此,本論文即以簡單的微機械結構作為載具,在固體力學的基礎下,來萃取薄膜材料的機械性質。並針對不同微細加工製程技術分別敘述如何在體型與面型微細加工製程中萃取與探討薄膜材料的楊氏係數(Young’s Modulus)、蒲松比(Poisson’s Ratio)、熱膨脹係數(Coefficient of Thermal Expansion, CTE)及殘餘應力(Residual stress)等機械性質更;此外,更針對不同的機械常數分別提出兩種不同的萃取方法,作為相互驗證之用,提高萃取的準確性。另外對於薄膜材料的熱疲勞現象也作了初步的探討。而本論文中所提出的薄膜機械性質萃取技術,各個單一技術除了可以單獨使用來作為系統元件批量製造時的材料機械性質測試鍵(Test-key)使用外,還可以結合其他單一技術然後形成一個完整且功能性更高的測試鍵群組。
Microelectromechanical system (MEMS) contains microsensors, microactuators, micromechanical structures, and integrated circuits. Since the micromachining fabrication processes are improved drastically, plenty of micromachined devices have been developed and commercialized presently. However the performance of these devices are not only depend s on the geometry design and fabrication process improvement, but on the control of mechanical properties of thin film materials. The mechanical properties, which are important issues but generally ignored by designer, usually make the devices have a deviated performance different from its initial design. Therefore, a simple and accurate method to characterize the mechanical properties of thin film materials is very important.
This thesis intends to characterize the mechanical properties of thin film materials using the micromachined structures. Base on the solid mechanics, the mechanical properties such as Young’s modulus, Poisson’s ratio and coefficient of thermal expansion are characterized by micromachined structures under different micromachining processes (Bulk/Surface micromachining). At least two types of characterized mechanisms were exploited to characterize each of mechanical properties for improving the accuracy. Furthermore, the thermal behaviors of thin films were also being discussed. Finally, every characterized mechanism exploited in this thesis not only can role as test key to characterize the mechanical property of thin film during the batch fabrication of devices, but also combined with other mechanism to be a test key group with more performance.
目錄
中文摘要 ………………………………………………………………I
英文摘要 …..……………………………………………………...II
符號說明 …..……………….…………………………………...III
目錄 …………………………...…………………………….V
圖目錄 ……………………………………………………….VIII
表目錄 ……………………………………………………..XII
第一章 緒論 ………………………………………………………….1
1-1研究動機 ……………………..……………………..…………1
1-2文獻回顧 ………………………………………………….……3
1-2.1 薄膜楊氏係數萃取 ……….….……………………..…3
1-2.2 薄膜殘餘應力萃取 ………...…....……………………6
1-2.3 薄膜其他機械性質萃取 …………..…………………11
1-3研究目標 ……………………………………………………..12
第二章 體型微細加工製程—薄膜楊氏係數及蒲松比 …..…23
2-1理論分析 ………………………………………………..23
2-2微機械結構動態測試 ...………..…..…………………..25
2-2.1 簡諧性磁力場激振法(MHE) …..………..…………...…26
2-2.2 簡諧性基座激振法(BHE) ...……………………………26
2-3試片製作與實驗 ……………...…..……………….....27
2-3.1 <100>及<111>晶片試片製作 .………………...…27
2-3.2 測試儀器架設 .....………………….…………………28
2-4結果與討論 …………....……...…..……………….....29
2-4.1 簡諧性磁力場激振法於薄膜楊氏係數之萃取 ……...29
2-4.2 環境壓力對結構共振頻率的影響 ……………………30
2-4.3 電磁線圈熱效應對結構共振頻率的影響 ……………31
2-4.4 基座諧振法於薄膜楊氏係數及蒲松比之萃取 …......33
2-5結論 ….….……..….…………………………………36
第三章 面型微細加工製程I—薄膜楊氏係數 …….....55
3-1面型結構邊界強化設計 ….…...…..……………….....55
3-1.1 肋補強式之邊界設計 …………………………...…56
3-1.2 包覆犧牲層式之邊界設計 …………………………58
3-1.3 無邊界樑之邊界設計 ………………………………59
3-2理論分析 - 無邊界樑振動法(Free-Free Beam) ….61
3-3試片製作與實驗 …………………………….……….62
3-4結果與討論 ………………………………….……….65
3-4.1 微懸臂樑振動法於薄膜楊氏係數之萃取 ……...…65
3-4.2 無邊界樑振動法於薄膜楊氏係數之萃取 ……...…66
3-5結論 ……..…………………..….…………………….67
第四章 面型微細加工製程II—薄膜殘餘應力 ………….86
4-1同平面式殘餘應變測試鍵 ……....……………….....86
4-1.1 直臂式微游標尺 ..……………………………...…87
4-1.2 弧臂式微游標尺 ...………..………………………88
4-1.3 高解析度弧臂式微游標尺測試鍵 ….…….………90
4-1.4 試片製作與實驗 ...……….…….…………………91
4-1.5 結果與討論 .………..…….….……………………91
4-1.6 結論 ……………..…………………………………92
4-2出平面式殘餘應變測試鍵 ……....……………….....93
4-2.1 理論分析 ………………………………………...…93
4-2.2 試片製作與實驗 ...…………………………………94
4-2.3 結果與討論 ….….…………………………………96
4-2.4 結論 ……………..…………………………………97
第五章 總結 ……………………………………..………107
5-1 研究成果 …………………………………………………107
5-2 未來工作 …………………………………………………107
第六章 參考文獻 ………………………………..…………108
附錄A 不準度分析 ……………………………….……..114
附錄B 薄膜熱膨脹係數 ……..………………………….117
附錄C 薄膜熱疲勞行為 ……..……………………….…127
本論文已發表之相關文獻 ….…..…………………………….…141
圖目錄
圖1.1 典型電容感測式加速度計示意圖 ……….…………...…………………..14
圖1.2 典型靜電式梳狀致動器示意圖 ...……..….…….……….………………..14
圖1.3 典型利用結構振動法萃取薄膜楊氏係數示意圖 ….…..…….…………..15
圖1.4 典型利用薄膜膨脹法萃取薄膜楊氏係數示意圖 ….….…..……………..15
圖1.5 利用突衝電壓法萃取薄膜楊氏係數示意圖 ………..…..….….…………16
圖1.6 利用微拉伸試驗法萃取薄膜楊氏係數示意圖 ………….….……………16
圖1.7 利用靜電夾持微拉伸試驗法萃取薄膜楊氏係數示意圖 ……..…………17
圖1.8 利用集中力負載試驗法萃取薄膜楊氏係數的典型示意圖 ….….………17
圖1.9 利用奈米壓痕機進行微結構破裂強度試驗的電子顯微鏡照片 …..……18
圖1.10利用微游標尺結構萃取薄膜殘餘應力示意圖 ………….…….…..……..18
圖1.11利用Guckel ring微結構萃取薄膜殘餘應力 ….……….……..………..19
圖1.12利用邊界旋轉效應萃取薄膜殘餘應力示意圖 …………....……………..19
圖1.13利用雙層膜微懸臂樑萃取薄膜殘餘應力示意圖 .…………...…………..20
圖1.14利用微橋狀樑後挫曲行為萃取薄膜殘餘應力示意圖 ….….…..………..20
圖1.15 M-Test突衝電壓法中所使用的檢測結構示意圖 ………...…………..21
圖1.16結構動態響應量測設備架設圖 ……………….……….…..……………..21
圖1.17利用薄膜壓痕破裂試驗萃取薄膜殘餘應力,(a)因壓痕應力所造成的裂縫擴展示意圖,(b)裂縫擴展之電子顯微鏡照片,和(c)壓痕之電子顯微鏡照片 ………………………………………..………..……………………..22
圖2.1 微懸臂樑的結構動態形變示意圖,(a)自然狀態,(b)第一階撓曲模態和(c)第一階扭轉模態 ……………………………….…………..….….……..39
圖2.2 利用面積轉換法將兩層不同材料的結構轉換成等效的單層材料結構,(a)轉換前,(b)轉換後 …………………..………………………………..40
圖2.3 簡諧性磁力場激振法激發機制示意圖 …..………..……………………..40
圖2.4 在<100>矽晶片上製作二氧化矽微懸臂樑,(a)電子顯微鏡照片和(b)經過KOH非等向性蝕刻後的截面示意圖 ………..……..………….…41
圖2.5 二氧化矽薄膜磁測試鍵的電子顯微鏡照片 ……………………………..41
圖2.6 在<111>矽晶片上製作二氧化矽微懸臂樑,(a)電子顯微鏡照片和(b)經過KOH非等向性蝕刻後的截面示意圖 ………………….…….…..42
圖2.7 微懸臂樑動態響應量測設備示意圖 ………………...…………………...42
圖2.8 同一磁測試鍵在不同的驅動電壓下其典型的頻率響應圖 .….…………43
圖2.9 微懸臂樑共振頻率與懸臂樑長度的關係圖 ………………..……………43
圖2.10 利用磁測試鍵所萃取出之二氧化矽薄膜,其楊氏係數與懸臂樑長度的關係圖 ………..………………………………………………………44
圖2.11 利用有限元素法分析沿著微懸臂樑長度方向的厚度變異對楊氏係數萃取結果的影響 …………………………………….……………………..…44
圖2.12 磁測試鍵在不同壓力下的動態響應圖,(a)微懸臂樑頻率響應與環境壓力的關係圖,(b)微懸臂樑第一階撓曲模態共振頻率與環境壓力的關係圖 ……………………………………..……………………….….45
圖2.13磁測試鍵在不同壓力下的品質因子(Quality factor, Q) ………………...46
圖2.14利用熱電偶量測電磁線圈的表面溫度與環境壓力的關係圖 …………...47
圖2.15利用熱電偶量測電磁線圈的表面溫度,在通入電流後隨著時間變化的曲線圖 …………………………………………………………………….…47
圖2.16利用壓電式換能器驅動微懸臂樑在不同壓力下的頻率響應圖 …….…..48
圖2.17利用壓電式換能器激發微懸臂樑的典型頻率響應圖,(a)使用脈衝波作為激發源訊號(BAW)和(b)以簡諧波作為激發源訊號(BHE) ………………49
圖2.18在不同激發機制,下所量測微懸臂樑撓曲模態自然頻率的分佈圖,(a) BAW及(b) BHE …………………………………………………….50
圖2.19 利用製作在<111>矽晶片上的二氧化矽微懸臂樑,所萃取出的二氧化矽薄膜在不同撓曲模態下的(a)楊氏係數及(b)蒲松比常數 ….……………...51
圖2.20 利用製作在<111>矽晶片上的二氧化矽微懸臂樑,在不同懸臂樑長度下所萃取出的二氧化矽薄膜之(a)楊氏係數,(c)剪應力常數及(b)蒲松比 ……………………………….…………..….….……..52
圖2.21 利用製作在<100>矽晶片上的二氧化矽微懸臂樑,所萃取出的二氧化矽薄膜在不同撓曲模態下的蒲松比常數,其中中空圓點為經由有限元素法的模擬結果 ………………………………….……..………….…53
圖2.22利用有限元素法分析微懸臂樑因梯度應力釋放所導致的結構彎曲現象對撓曲模態共振頻率的影響 ………….………………………………...54
圖2.23利用有限元素法分析微懸臂樑因梯度應力釋放所導致的結構彎曲現象對扭轉模態共振頻率的影響 ………….………………………………...54
圖3.1 在面型微細製程中可能出現的邊界型態 ………………………………..69
圖3.2 凸形錨點在不同尺寸下其邊界強度與尺寸比的關係圖 ………………..69
圖3.3 包覆犧牲層式的邊界強化設計,(a)平坦化界強化設計,(b)堆疊結構層邊界強化設計 …………………………..………………………………….70
圖3.4 利用有限元素法分析在不同邊界設計下,微懸臂樑的共振頻率與理想固定邊界的誤差值 …………………………………………….…………..70
圖3.5 利用四根支撐樑作為固定邊界的類無邊界樑 …………………………..71
圖3.6 利用有限元素法分析微檢測樑之共振頻率隨著直式支撐樑長度變化的情形 ……………………………………………………….………….71
圖3.7 作為摺曲樑結構參數設計的四種摺曲樑形式 .…………..…………..….72
圖3.8 利用有限元素法分析微檢測樑之共振頻率隨著摺曲樑摺曲寬度變化的情形 …………..………………………………………………………..73
圖3.9 利用有限元素法分析微檢測樑之共振頻率隨著不同摺曲樑長寬比變化的情形 ………………………………………………..……………………..74
圖3.10 利用有限元素法分析微檢測樑共振頻率隨摺曲樑長度變化的情形 …..75
圖3.11利用無邊界樑萃取材料機械性質的示意圖 ….…………..…………..….76
圖3.12 在MUMPs共用製程中,面型測試鍵的製作流程圖,圖中省略第0層複晶矽及低應力氮化矽薄膜 ……………………..……………………..77
圖3.13 利用美商Cronos提供的MUMPs公用製程所製作的微懸臂樑之電子顯微鏡照片 ………….……………………………………………….…….78
圖3.14 利用Cronos建議之懸浮參數所懸浮出的微游標尺殘餘應變規,其指標樑的長度為600微米 ……………………….………..……………………..79
圖3.15 利用調整過之懸浮參數所懸浮出的微游標尺殘餘應變規,其指標樑的長度為900微米 …………..……………………..……………………..79
圖3.16 面型測試鍵群組的電子顯微鏡全景照片 ………………………………..80
圖3.17 有堆疊結構層與無堆疊結構層之包覆式邊界設計,對於楊氏係數萃取結果的影響 ……………….…………………………………….…...81
圖3.18 有堆疊結構層之包覆犧牲層式邊界 ………….…………..…………..….82
圖3.19 無堆疊結構層之包覆犧牲層式邊界 ……………………………………..82
圖3.20 利用微懸臂樑振動法萃取第51回合MUMPs共用製程中兩層複晶矽結構層的楊氏係數之結果圖 …………………………………………….…….83
圖3.21 利用微懸臂樑振動法萃取第55回合MUMPs共用製程中兩層複晶矽結構層的楊氏係數之結果圖 ……….…………………………………….…...83
圖3.22 經由第55回合MUMPs共用製程製作完成的類無邊界樑之電子顯微鏡照片 ……………………………………………………………………..….84
圖3.23 利用光學干涉儀量測類無邊界樑中之檢測樑的表面形狀 ……………..85
圖4.1 新型微游標尺應變規的示意圖,(a)直臂式微游標尺及(b)弧臂式微游標尺 …………….……………………..…………………………..98
圖4.2 以有限元素法模擬直臂式微游標尺應變規其旋轉位移量與殘餘應變的關係圖 ………………………………………………………………..99
圖4.3 以有限元素法模擬弧臂式微游標尺應變規其旋轉位移量與殘餘應變的關係圖 ……………………..…………………………………………….100
圖4.4 高解析度微游標尺應變規的設計圖 ……………………..…………….101
圖4.5 新型游標尺規之「錯位」設計圖 …………….……………..…………101
圖4.6 由MUMPs共用製程製作完成的高解析度微游標尺應變規之電子顯微鏡照片 ………………………..……………………………………….102
圖4.7 高解析度微游標尺應變規之指標樑因檢測樑釋放殘餘應力所產生的側向偏移量 ……………………………………..………………………….102
圖4.8 利用高解析度微游標尺應變規萃取第55回合MUMPs共用製程中之第一層複晶矽時,其旋轉位移量與指標樑長度的關係圖 ……………..……103
圖4.9 利用高解析度微游標尺應變規萃取第55回合MUMPs共用製程中之第一層複晶矽時,其殘餘均佈應變與指標樑長度的關係圖 ……….………103
圖4.10 微橋狀樑殘餘應變規的結構概念圖,其中A點是微橋狀樑的中心點位置,B點則是四分之一處 ……..…………………………………………104
圖4.11 經過第55回合MUMPs共用製程製作後的微橋狀樑殘餘應變規之電子顯微鏡照片 …………………..…………………………………………104
圖4.12 堆疊結構層包覆式邊界對於微橋狀樑挫曲行為的影響,(a)因堆疊結構層剝離所導致的不對稱行為,(b)堆疊結構層無剝離現象時的對稱性挫曲行為 …………………………………….……………………..…………105
圖4.13 利用微橋狀樑殘餘應變規檢測第55回合MUMPs共用製程中第一層複晶矽殘餘應變時,其中心點形變量與微橋狀樑長度的關係圖 …………106
圖4.14 利用微橋狀樑殘餘應變規檢測第55回合MUMPs共用製程中第一層複晶矽在不同晶片上之殘餘壓應變的分佈圖 ………………………………106
表目錄
表1.1 鎳鐵薄膜在不同萃取機制下,其楊氏係數的差異值 ………..………...13
表2.1 <100>試片製作之黃光微影製程及濕式蝕刻的相關參數 ..….…..…..37
表2.2 AZP4620光阻之黃光微影製程相關參數 ………….….………………..38
表2.3 利用有限元素法分析經KOH蝕刻後的厚度差異對結構共振頻率的影響 …………………………………………………....…….……..38
表3.1 利用有限元素法分析圖3.1中所示之4種邊界型態邊界對微懸臂樑共振頻率的影響 ……………………………………………………………...68
表3.2 利用有限元素法分析圖3.3中所示之種邊界型態邊界對微懸臂樑共振頻率的影響 ……………………………………………………………...68
第六章 參考文獻
[1] J. Wylde and T.J. Hubbard, “Elastic properties and vibration of micro-machined structures subject to residual stresses,” Proceeding of 1999 IEEE Canadian Conference on Electrical and Computer engineering, Shaw Conference Center, Edmonton, Alberta, Cannada, May 9-12, 1999, PP. 1674-1679.
[2] K.E. Petersen and C.R. Guarnieri, “Young’s modulus measurements of thin films using micromechanics,” Journal of Applied Physic, 50, pp. 6761-6766, 1979.
[3] H. Guckel, T. Randazzo, and D.W. Burns, “A simple technique for the determination of mechanical strain in thin films with application to polysilicon,” Journal of Apply Physical, 57, pp. 1671-1675, 1985.
[4] L.M. Zhang, D. Uttamchandani and B. Culshaw, “Measurement of Mechanical properties of silicon microresonators,” Sensors and Actuators A, 29, pp. 79-84, 1991.
[5] L. Kiesewetter, J.-M. Zhang, D. Houdeau and A. Steckenborn, “Determining of Young’s moduli of micromechanical thin films using the resonance method,” Sensors and Actuators A, 35, pp. 153-159, 1992.
[6] J.J. Vlassak and W.D. Nix, “A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films,” Journal of Materials Research, 7, no. 12, pp. 3242-3249, 1992.
[7] O. Tabata, K. Kawahata, S. Sugiyama and I. Igaraashi, “Mechanical property measurements of thin films,” Sensors and Actuators A, 20, pp. 135-141, 1989.
[8] O. Tabata, T. Tsuchiya and N. Fujitsuka, “Poisson’s ratio evaluation of thin film for sensor application,” Technical Digest of the 12th Sensor Symposium 1994, 1994, pp.19-22.
[9] K. Najafi and K. Suzuki, Proceeding of the IEEE MEMS, Salk Lake City, UT, Feb., 1989.
[10] X.-Q. Sun, Z. Li, X. Zheng and L. Lin, ”Study of fabrication process of a micro electrostatic switch and its application to a micromechanical V-F converter,” Sensors and Actuators A, 35, pp. 189-192, 1993.
[11] P. M. Osterberg and S. D. Senturia, “M-Test: A test chip for MEMS material property measurement using electrostatically actuated test structures,” Journal of Microelectromechanical systems, 6, no. 2, 107-118, 1997.
[12] W. N. Sharpe, Jr., B. Yuan, and R. L. Edwards, “A new technique for measuring the mechanical properties of thin films,” Journal of Microelectromechanical Systems, 6, no. 3, pp. 193-199, 1997.
[13] W.N. Sharpe, Jr., B. Yuan, R. Vaidyanathan and R.L. Edwards, “Measurements of Young’s modulus, Poisson’ ratio, and tensile strength of polysilicon,” The 10th IEEE International workshop of Micro Electro Mechanical Systems, MEMS '' 97, 1997, pp. 424-429.
[14] H. Ogawa, K. Suzuki, S. Kaneko, Y. Ishikawa and T. Kitahara, “Measurements of mechanical properties of microfabricated thin films,” The 10th IEEE International workshop of Micro Electro Mechanical Systems, MEMS'' 97, 1997, pp. 430-435.
[15] T. Tsuchiya, O. Tabata, J Sakata and Y. Taga, “Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films,” Journal of Microelectromechanical Systems, 7, no. 1, pp. 106-113, 1998.
[16] C. Serre, P. Gorostiza, A. Perez-Rodriguez, F. Sanz and J.R. Morante, “Measurement of micromechanical properties of polysilicon microstructures with an atomic force microscope,” Sensors and Actuators A, 57, pp. 215-219, 1998.
[17] C. Serre, A. Perez-Rodriguez, J.R. Morante, P. Gorostiza and J. Esteve, “Determination of micromechanical properties of thin films by beambending measurements with an atomic force microscope,” Sensors and Actuators A, 74, pp. 134-138, 1999.
[18] S. Johansson, J.-A. Schweitz, L. Tenerz and J. Tiren, “Fracture testing of silicon microelements in situ in a scanning electron microscope,” Journal of Applied Physics, 66, pp. 4799-4803, 1988.
[19] N.X. Randall and R.A.J. Soden, “Characterization of the mechanical properties of MEMS devices using nanoscale techniques,” Proceeding of Material Research Society Symposium, 741, pp. J2.3.1-J2.3.9, 2003.
[20] T. Chudoba, N. Schwarzera, F. Richtera and Beck, “Determination of mechanical film properties of a bilayer system due to elastic indentation measurements with a spherical,” Thin Solid Films, 377, pp. 366-372, 2000.
[21] L. Riester, P.J. Blau, E. Lara-Curzio and K. Breder, “Nanoindentation with a Knoop indenter,” Thin Solid Films, 377, pp. 635-639, 2000.
[22] L Lin, R.T. Howe, and A.P. Pisano, “A passive, in situ micro strain gage,” Proceeding of the 1993 IEEE Conference on Micro Electro Mechanical Systems, Fort Lauderdale, FL, Feb, 1993, PP.201-206.
[23] J.F.L. Goosen, B.P. Drieenhuizen, P.J. French and R.F. Wolffenbuttel, “Stress measurement structure for micromachined sensors,” The 7th Internal Conference on Solid-State Sensors and Actuators, Transducer’s 93, Yokohama, Japan, June 7-10, 1993, pp. 783-786.
[24] J.A. Schweitz and F. Ericson, “Evaluation of mechanical materials properties by means of surface micromachined structures,” Sensors and Actuators A, 74, pp. 126-133, 1999.
[25] E.H. Yang and S.S. Yang, “A new technique for quantitative determination of the stress profile along the depth of P+ silicon films,” The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, June 25-29, 1994, pp. 68-71.
[26] P. Lange, M. Kirsten, W. Riethmuller, B. Wenk and G. Zwicker, “Thick polycristalline silicon for surface micromechanical applications: deposition, structuring and mechanical characterization,” The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, June 25-29, 1994, pp. 202-205.
[27] Y.B. Gianchandani and K. Najafi, “Bent-beam strain sensors,” Journal of Microelectromechanical systems, 5, no. 1, pp. 52-58, 1996.
[28] C.-S. Pan and W. Hsu, “A microstructure for in situ determination of residual strain,” Journal of Microelectromechanical systems, 8, no. 2, pp. 200-204, 1999.
[29] H. Guckel, D.W. Burns, H.A.C. Tilmans, C.C.G. Visser, D. DeRoo, T.R. Christenson, P.J. Klomberg, J.J. Sniegowski, and D.H. Jones, “Processing conditions for polysilicon films with tensile strain for large aspect ratio microstructures,” Technical Digest of IEEE Solid-State Sensor and Actuator Workshop, June 6-9, 1988, pp. 51-56.
[30] H. Guckel, D.W. Burns, H.A.C. Tilmans, D. DeRoo, and C. Rutigliano, “Mechanical properties of fine grained polysilicon-the repeatability issue,” Technical Digest of IEEE Solid-State Sensor and Actuator Workshop, June 6-9, 1988, pp. 96-99.
[31] H. Guckel, D.W. Burns, C.C.G. Visser, H.A.C. Tilmans and D. DeRoo, “Fine grained polysilicon films with built-in tensile strain,” IEEE Transactions on Electron Devices, ED-35, 6, pp. 800-801, June, 1988.
[32] H. Guckel, D.W. Burns, C. Rutigliano, E. Lovell and B. Choi, “Diagnostic microstructures for the measurement of intrinsic strain in thin films,” Journal of Micromechanics and Microengineering, 2, pp. 86-95, 1992.
[33] W. Fang and J.A. Wickert, “Determining mean and gradient residual stress in thin films using micromachined cantilevers,” Journal of Micromechanics and Microengineering, 6, pp. 301-309, 1996.
[34] W. Fang and J.A. Wickert, “Comment on measuring thin-film stresses using bi-layer micromachined beams,” Journal of Micromechanics and Microengineering, 5, pp. 276-281, 1995.
[35] Y.-H. Min and Y.-K. Kim, “In situ measurement of residual stress in micromachined thin films using a specimen with composite-layered cantilevers,” Journal of Micromechanics and Microengineering, 10, pp. 314-321, 2000.
[36] W. Fang and J.A. Wickert, “Post-buckling of micromachined beams,” Journal of Micromechanics and Microengineering, 4, pp. 182-187, 1994.
[37] Q. Zou, Z. Li, and L. Liu, “New methods for measuring mechanical properties of thin films in micromachining: beam pull-in voltage (VPI) method and long beam deflection (LBD) method,” Sensors and Actuators A, 48, pp. 137-143, 1995.
[38] J. Wylde and T. J. Hubbard, “Elastic properties and vibration of micro-machined structures subject to residual stress,” Proceedings of the 1999 IEEE Canadian conference on electrical and computer engineering, Shaw conference center, Edmonton, Alberta, Canada, May 9-12, 1674 (1999).
[39] T. Ikehara, R.A.F. Zwijze and K. Ikeda, “New method for an accurate determination of residual strain in polycrystalline silicon films by analyzing resonant frequencies of micromachined beams,” Journal of Micromechanics and Microengineering, 11, pp. 55-60, 2001.
[40] T.-Y. Zhang, L.-Q. Chen and R. Fu, “Measurements of residual stresses in thin films deposited on silicon wafers by indentation fracture,” Actual Materials, 47, No. 14, pp. 3869-3878, 1999.
[41] Y. Bisrat and S.G. Roberts, “Residual stress measurement by Hertzian indentation,” Materials Science and Engineering A, 288, pp. 148—153, 2000.
[42] L.S. Fan, R.S. Muller, W. Yun, R.T. howe and J. Huang, “Spiral microstructures for the measurement of average strain gradients in thin films,” Proceeding of the 1990 IEEE Coference on Micre Electro Mechanical Systems, Napa Valley, CA, Feb. 11-14, 1990, pp.177-181.
[43] B.F. Usher, D. Zhou, S.C. Goh, T. Warminski and X.P. Huang, “Poisson’s ratio of GaAs,” Proceedings of Optoelectronic and Microelectronic Materials Devices, 1998, pp. 290-293, 1998.
[44] B. F. Figgins, G. O. Jones and D. P. Riley, “The thermal expansion of Al at low temperature as measured by an X-ray diffraction method,” Philosophical Magazine, 8, no. 1, pp. 747-758, 1956.
[45] R. O. Simmons and R. W. Balluffi, “Low temperature thermal expansion of Cu,” Physical Review, 108, pp. 278-280, 1957.
[46] J. B. Conway and A. C. Losekamp, “Refraction error in a comparator method for measuring thermal expansion,” Review of Scientific Instruments, 36, pp. 1245-1246, 1965.
[47] R. V. Jones, “Recording optical lever,” Journal of Scientific Instrument, 36, pp.90, 1959.
[48] E. Huzan, C. P. Abbiss, and G. O. Jones, “Thermal expansion of Aluminum at low temperature,” Philosophical Magazine, 8, no. 6, pp. 277-285, 1961.
[49] J. M. Shapiro, D. R. Taylor, and G. M. Graham, “A sensitive dilatometer for use at low temperatures,” Can. J. Phys., 42, pp. 835-847, 1964.
[50] R. E. Kinzly, “A new interferometer capable of measuring small optical path differences,” App. Opt., 6, pp. 137-140, 1967.
[51] S.F. Jacobs, J.N. Bradford, and J.W. Berthold III, “Ultraprecise measurement of thermal expansion coefficients,” App. Opt., 9, pp. 2477-2480, 1970.
[52] K. S. Teh, L. Lin and M. Chiao, “The creep behavior of polysilicon microstructures,” The 10th International Conference on Solid-State Sensors and Actuators, Sandai Japan, June, 1999, pp.508-511.
[53] D. Gerth, D. Katzer and M. Krohn, “Study of the thermal behavior of thin aluminum alloy films,” Thin Solid films, 208, pp.67-75, 1992.
[54] M. S. Jackson and C-Y Li, “Stress relaxation and hillock growth in thin films,” Acta. metall., 30, pp.1993-2000, 1982.
[55] H. Lakdawala, and G. K. Fedder, “Analysis of temperature-dependent residual stress gradients in CMOS micromachined structures,” The 10th International Conference on Solid-State Sensors and Actuators, Sandai Japan, June, 1999, pp.526-529.
[56] S. Timoahenko, Vibration problems in engineering, 4th edition, John Wiley & Sons, 1976.
[57] F. P. Beer and E. R. Johnston Jr., Mechanics of Materials, 2nd edition, McGrew-Hill, 1992.
[58] L. Meirovitch, Analytical method in vibration, MacMillan, 1962.
[59] Y. -M. Chou and W. Fang, “Nonlinear dynamic behavior of electrostatically actuated devices,” Proceedings of SPIE, 4175, Sep. 2000, pp. 192.
[60] W.-P. Lai, Y.-P. Ho and W. Fang, “Novel bulk acoustic wave hammer to determinate the dynamic response of microstructures using pulsed broad bandwidth ultrasonic transducers,” ASME 2001 International Mechanical Engineering Congress and Exposition, New York, NY, Nov. 11-16, 2001.
[61] H.-H. Hu, H.-Y. Lin, W. Fang and Bruce C.S. Chou, “The diagnostic micromachined beams on (111) substrate”, Sensors and Actuators A, 93, pp. 258-265, 2001.
[62] K. E. Petersen, “Dynamic micromechanics on silicon: techniques and devices,” IEEE Transactions on Electron Devices, ED25, no. 10, Oct. 1978.
[63] W. E. Newell, “Miniaturization of turning forks,” Science, 161, PP. 1320-1326, 1968.
[64] K.E.B. Thornton, D. Uttamchandani and B. Culshaw, “Temperature dependence of resonant frequency in optically excited diaphragms,” Electronic letters, 22, no. 23, pp. 1232-1234, 1986.
[65] L. M. Zhang, D. Walsh, D. Uttamchandani and B. Culshaw, “Effect of optical power on the resonance frequency of optically powered silicon microresonators,” Sensors and Actuators A, 29, pp. 73-78, 1991.
[66] S. Inaba and K. Hane, “Resonance frequency shifts of a photothermal vibration in vacuum,” Journal of vacuum science and technology, A9, pp. 2138-2139, 1991.
[67] M.T. Kim, “Influence of substrates on the elastic reaction of films for the microindentation,” Thin Solid Films, 283, pp.12-16, 1996.
[68] P.M. Hagelin and O. Solgarrd, “Optical raster-scanning displays based on surface-micromachined polysilicon mirrors,” IEEE Journal of Selected Topic in Quantum Electronics, 5, no.1, pp. 67-74, 1999.
[69] G.J. Su, S.-S. Lee and M. C. Wu, “Optical scanners realized by surface-micromachined vertical torsion mirror,” IEEE Photonic Technology Letters, 11, no. 5, pp. 587-589,1999.
[70] R.S. Muller and K.Y. Lau, “Surface-micromachined microoptical elements and systems,” Proceedings of the IEEE, 86, no. 8, pp. 1705-1720, 1998.
[71] M. Mehregany and Y.-C. Tai, “Surface micromachined mechanisms and micromotors,” Journal of Micromechanic and Microengineering, 1, pp. 73-85, 1991.
[72] A.A. Yasseen, S.W. Smith, F.L. Merat and M. Mehregany, “Diffraction grating scanners using polysilicon micromotors,” IEEE Journal of Selected Topic in Quantum Electronics, 5, no.1, pp. 75-82, 1999.
[73] W.C. Tang, M.G. Lim and R.T. Howe, “Electrostatic comb drive levitation and control method,” Journal of Microelectromechanical Systems, 1, no. 4, pp. 170-178, 1992.
[74] R. Legtenberg, A.W. Groeneveld and M. Elwenspoek, “Comb-drive actuators for large displacements,” Journal of Micromechanic and Microengineering, 6, pp. 320-329, 1996.
[75] T. Hirano, L.-S. Fan, J.Q. Gao and W.Y. Lee, “MEMS milliactuator for hard-disk drive tracking servo,” Journal of Microelectromechanical Systems, 7, no. 2, pp. 149-155, 1998.
[76] ASTM standard, C623-92 (2000): Standard Test Method for Young''s Modulus, Shear Modulus, and Poisson''s Ratio for Glass and Glass-Ceramics by Resonance, ASTM International, West Conshohocken, PA.
[77] R.L. Mullen, M. Mehregany, M.P. Omar and W.H. Ko, “Theoretical modeling of boundary conditions in microfabricated beams,” Proceeding of the 1991IEEE Conference on Micro Electro Mechanical Systems, ''An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'', Nara Japan, Jan 30-Feb 2, 1991, PP.154-159.
[78] Q. Meng, M. Mehregany and R.L. Mullen, “Theoretical modeling of microfabricated beams with elastically restrained supports,” Journal of Microelectromechanical systems, 2, no. 3, pp. 128-137, 1993.
[79] M.J. Kobrinsky, E.R. Deutsch and S.D. Senturia, “Effect of support compliance and residual stress on the shape of double supported surface-micromachined beams,” Journal of Microelectromechanical systems, 9, no. 3, pp. 361-369, 2000.
[80] John J.-Y Gill, L.V. Ngo, P.R. Nelson, and C.-J Kim, “Elimination of extra spring Effect at the step-up anchor of surface-micromachined structure,” IEEE Journal of Microelectromechanical systems, 7, no. 1, pp. 114-121, 1998.
[81] K. Wang, A.-C. Wong and C.T.-C. Nguyen, “VHF free-free beam high-Q micromechanical resonators,” Journal of Microelectromechanical systems, 9, no. 3, pp. 347-360, 2000.
[82] J.M. Bustillo, R.T. Howe and R.S. Muller, “Surface micromachining for microelectromechanical system,” Proceeding of the IEEE, 86, no. 8, pp. 1552-1574, 1998.
[83] C.-J. Kim, J.Y. Kim and B. Sridharan, “Comparative evaluation of drying techniques foe surface micromachining,” Sensors and Actuators A, 64, pp. 17-26, 1998.
[84] W.R. Ashurst, C. Yau, C. Carraro, C. Lee, G.J. Kluth, R.T. Howe and R. Maboudian, “Alkene based monolayer films as anti-stiction coatings for ploysilicon MEMS,” Sensors and Actuators A, 91, pp. 239-248, 2001.
[85] S. Pamidighantam, W. Laureyn, C. Rusu, K. Baert,R. Puers and H.A.C. Tilmans, “A wet release process for fabricating slender and compliant suspended micro-mechanical structures,” Sensors and Actuators A, 103, pp. 202-212, 2003.
[86] D.T. Read and J.C. Marshall, “Measurements of fracture strength and young’s modulus of surface-micromachined polysilicon,” Microlithography and metrology in Micromachining II, SPIE, 2880, pp. 56-63.
[87] H. Kahn, S. Stemmer, K. Nandakumar, A.H. Heuer, R.L Mullen, R. Ballarini and M.A. Huff, “Mechanical propertied of thick surface micromachined ploysilicon films,” The 9th IEEE Annual International workshop of Micro Electro Mechanical Systems, MEMS'' 96, San Diego, USA, 1996, pp. 343-353.
[88] Cronos Integrated Microsystems Inc.: http://www.memsrus.com.
[89] Veeco Instruments Inc.: http://www.veeco.com.
[90] S. Greek and N. Chitica, “Deflection of surface-micromachined devices due to internal, homogeneous or gradient stresses,” Sensors and Actuators A, 78, pp. 1-7, 1999.
[91] M.S. Baker, M.P. de Boer, N.F. Smith and M.B. Sinclair, “Measurement of residual stress in MEMS to sub megapascal accuracy,” Proceeding of Society for Experimental Mechanics Annual Conference and Exposition, Portland OR, June 4-6, 2001.
[92] R.O.E. Vijgen and J.H. Dautzenberg, “Mechanical measurement of the residual stress in thin PVD film,” Thin Solid Films, 270, PP. 264-269, 1995.
[93] A.J. Perry, J.A. Sue and P.J. Martin, “Practical measurement of the residual stress in coating,” Surface and Coatings Technology, 81, PP. 17-28, 1996.
[94] X. Zhang, K.-S. Chen, R. Ghodssia, A.A. Ayon and S.M. Spearing, “Residual stress and fracture in thick tetraethylorthosilicate (TEOS) and silane-based PECVD oxide films,” Sensors and Actuators A, 91, pp. 379-386, 2001.
[95] S. Zhang, Hong Xie, Xianting Zeng and Peter Hing, “Residual stress characterization of diamond-like carbon coatings by an X-ray diffraction method,” Surface and Coatings Technology, 122, PP. 219-224, 1999.
[96] T. Murotani, H. Hirose, T. Sasaki and K. Okazaki, “Study on stress measurement of PVD-coating layer,” Thin Solid Films, 377-378, PP. 617-620, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊