跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/24 16:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃政浩
研究生(外文):Huang, Cheng-Hao
論文名稱:不同間距與壁溫之兩平行低溫側壁內之層流預混甲烷火焰結構之實驗研究
論文名稱(外文):Experiments on the Structure of the Laminar Premixed Methane/Air Flames Between Two Parallel Walls of Different Distance and Temperatures
指導教授:王訓忠
指導教授(外文):Wong, Shwin-Chung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:55
中文關鍵詞:低溫壁面熄滅間距甲烷/空氣
外文關鍵詞:cold wallquenching distanceMethane/Air
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:1
本研究是建立一平面火焰爐實驗裝置用以研究在不同當量比、低溫壁面溫度及壁面間距下對層流預混甲烷/空氣火焰結構的影響。實驗方法在定性上,以V8直接拍攝及schlieren光學觀察火焰在兩平行低溫側壁內的火焰結構,定量上則利用S-type熱電偶作溫度場量測。實驗中利用水及矽油的沸點不同改變低溫槽壁面溫度,固定甲烷/空氣混合氣進口速度在室溫下為0.2m/s,改變燃氣當量比及平板間距進行觀察量測。觀測結果顯示,預混火焰在兩低溫壁間,會在schlieren影像中產生一類邊界層區域。V8直接拍攝影像顯示,火焰沿著低溫壁面有拉伸現象產生,在當量比1.0時的火焰拉伸現象明顯。當量比降低則火焰拉伸減弱,至當量比0.7以下拉伸又開始增強。在Φ接近0.4時,火焰會產生不穩定震盪而熄滅。此外,當量比大於1.1時,火焰離開測試區內部,於測試區出口形成雙層火焰。火焰的拉伸現象在兩壁間距較小時較為明顯。當兩壁間距減為7mm時,火焰在點燃後,會迅速傳至爐面附近,並在發生聲響後快速熄滅。矽油槽低溫壁的火焰拉伸較水低溫壁為小。在相同平板間距及當量比時,矽油槽低溫壁內部整體溫度高於水低溫槽。觀察V8直接拍攝影像顯示在兩壁間距為15mm及10mm、當量比1.0∼0.9時,在垂直低溫壁上段有二次火焰的存在。量測的溫度分佈與V8直接拍攝影像的結果相符;溫度分佈亦可解釋schlieren中類邊界層區域形成的原因。此外,在Φ=0.9、W=10mm時的溫度分佈量測顯示,二次火焰附近有一局部增溫區域。本研究亦採用甲烷在貧油及富油下的反應機制不同,解釋了何以當Φ≧1.1時火焰無法傳入平板之間、何以Φ=1.0時火焰在低溫壁附近呈現明顯拉伸,以及何以文獻中甲烷火焰的熄滅間距的極限Φ值(Φ∼1.3)明顯小於其可燃極限Φ=1.64。

圖表目錄 Ⅲ
符號說明 Ⅵ
第一章 緒論 1
1.1 前言…………………………………………………………… 1
1.2 文獻回顧……………………………………………………… 2
1.3 研究目的……………………………………………………… 6
第二章 實驗設備與方法 8
2.1 實驗設備……………………………………………………… 8
2.2 實驗步驟……………………………………………………… 12
第三章 結果與討論 13
3.1 Schlieren影像與可見光影像……………………………… 13
3.2 溫度分佈……………………………………………………… 15
3.3 當量比的效應………………………………………………… 16
3.4 兩低溫壁間距的效應………………………………………… 21
3.5 低溫壁溫度的效應…………………………………………… 22
3.6 可見光影像與溫度分佈之關係……………………………… 23
3.7 Schlieren 影像與溫度分佈之關係………………………… 24
3.8 二次火焰……………………………………………………… 25
第四章 結論 27
參考文獻 30
附錄 35

[1] Wichman, I. S. and Bruneaux, G., “Head-On Quenching of a
Premixed Flame by a Cold Wall,” Combustion and Flame 103, 296-310 (1995).
[2] Kim, H. M., Lee, S. R. and Chung, S. H., “Numerical Study on the
Structure and Extinction of Stretched Lean H2/Air Premixed Flames,” Transport Phenomena in Thermal Engineering 74, 643-647 (1993).
[3] Westbrook, C. K., “A Numerical Study of Laminar Wall Quenching,”
Combustion and Flame 40, 81-99 (1981).
[4] Vlachos, D.G., Schmidt, L. D., and Aris, R., “Ignition and Extinction
of Flames Near Surfaces: Combustion of H2 in Air,” Combustion and Flame 95, 313-335 (1993).
[5] Poinsot, T. J., Haworth, D. C. and Bruneaux, G., “Direct Simulation
and Modeling of Flame-Wall Interaction for Premixed Turbulent Combustion,” Combustion and Flame 95, 118-132 (1993).
[6] Hackert, C. L., Ellzey,J. L., and Ezekoye, O. A., “Effects of Thermal
Boundary Conditions on Flame Shape and Quenching in Ducts,” Combustion and Flame 112, 73-84 (1998).
[7] Carrier, G. F., Fendell, F. E. and Feldman, P. S., “Laminar Flame
Propagation/Quench for a Parallel-Wall Duct,” Twentieth Symposium (International) on Combustion, The Combustion Institute, pp. 67-74, 1984.
[8] Fairchild, P. W., Fleeter, R. D., and Fendell, F. E., “Raman
Spectroscopy Measurements of Flame Quenching in a Duct-Type Crevice,” Twentieth Symposium (International) on Combustion, The Combustion Institute, pp. 85-90, 1984.
[9] Yan, Z., and Holmstedt, G., “Three-dimensional Computation of Heat
Transfer from Flame Between Vertical Parallel Walls,” Combustion and Flame 117, 574-588 (1999).
[10] Turns, S. R., “An Introduction to Combustion,” chapter 8, McGraw-Hill, Inc. 2nd ed., 2000.
[11] Ezekoye, O., Greif, R., and Sawyer, R.F., “Increased Surface
Temperature Effects on Wall Heat Transfer during Unsteady Flame Quenching,” Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, pp. 1465-1472, 1992.
[12] Ezekoye, O.A., “Heat Transfer Modeling during Knock and Flame
Quenching In an Engine Chamber,” Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, pp. 2661-2668, 1996.
[13] 胡耀仁, “The Quenching Effect of Cold Walls on Steady Laminar
Premixed H2/O2 Flames,” 國立清華大學動力機械工程學系碩士論文, (2000).
[14] 蔡森源, “Experiments on the Structure of the Laminar Premixed CH4/Air Flame Between Two Parallel Cold Side Walls,” 國立清華大學動力機械工程學系碩士論文, (2002).
[15] Andrae, J. and Bjornbom, P., “Numerical Studies of Wall Effects
with Laminar Methane Flames,” combustion and Flame 128, 165-180 (2002).
[16] Trevino, C. and Sen, M., “Transient Phenomena in Boundary Layer Ignition With Finite Plate Thermal Resistance,” Eighteenth Symposium (International) on Combustion, The Combustion Institute, p.1781, 1981.
[17] Law, C. K. and Law, H. K., “Thermal-ignition Analysis in Boundary-Layer Flows,” J. Fluid Mech., 92-97 (1979).
[18] 趙令鈞, “ Ignition Analysis of Combustible Stagnation-Point Flow,” 國立清華大學動力機械工程學系碩士論文, (1999).
[19] Miller, J. A. and Bowman, C. T., “Mechanism and Modeling of Nitrogen Chemistry in Combustion,”Prog. Energy Combust. Sci., Vol.15, 287-338 (1989).
[20] Kent, A., “A Noncatalytic Coating for Platinum-Rhodium Thermocouples,” Combustion and Flame 14, 279-282 (1970).
[21] Peterson, R. C. and Laurendeau, N. M., “Emittance of Yttrium-Beryllium Oxide Thermocouple Coating,” Combustion and Flame 60, 279-284 (1985).
[22] Incropera, F. P. and Dewitt, D. P., Fundamentals of Heat and Mass Transfer, John Wiley and Sons, Inc., 1996.
[23] Eckert, E.R.G and Goldstein, R. J., “Measurements in Heat Transfer,” McGraw-Hill, Inc.1976.
[24] Egolfopoulos, F. N., Zhang, H. and Zhang, Z., “Wall Effect on the Propagation and Extinction of Steady, Strained, Laminar Premixed Flames,” Combustion and Flame 109, 237-252 (1997).
[25] Friedman, R., “The Quenching of Laminar Oxyhydrogen Flames by Solid Surface,” Third Symposium on Combustion, Flame and Explosion Phenomena, pp. 110-120 (1972).
[26] Blanc, M. V., Guest, P. G., von Elbe, G., and Lewis, B., “Ignition of Explosive Gas Mixture by Electric Sparks. I. Minimum Ignition Energies and Quenching Distance of Mixtures of Methane, Oxygen, and Inert Gases,” Journal of Chemical Physics, 15(11), 798-802 (1947).
[27] Andrews, G. E. and Bradley, D., “The Burning Velocity of Methane-Air Mixtures,” Combustion and Flame 19, 275-288 (1972).
[28] Mauss, F. and Peters, N., “Reduced Kinetic Mechanisms for Premixed Methane-Air Flames,” in Reduced Kinetic Mechanism for Applications in Combustion Systems, ed. by Peters, N. and Rogg, B., Lecture Notes in Physics, m15, 1993.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文