(18.207.129.82) 您好!臺灣時間:2021/04/19 20:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳亭穎
研究生(外文):Ting-Ying Wu
論文名稱:麥斯威爾磁滯模型鑑別之改善策略
論文名稱(外文):An Improved Identification Procedure for Maxwell Hysteresis Model
指導教授:葉廷仁
指導教授(外文):Ting-Jen Yeh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:麥斯威爾模型壓電致動器磁滯鍵結圖
外文關鍵詞:Maxwell modelPiezoelectric actuatorsHysteresisBond graph
相關次數:
  • 被引用被引用:3
  • 點閱點閱:145
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
壓電致動器由於具有微小位移解析度高、響應速度快等優異特性,近年來已被廣泛應用於奈米定位技術,但壓電材料特有的磁滯效應卻使得系統動態特性呈非線性,影響精密定位控制與設計上的困難。
本文針對常用於描述磁滯效應的麥斯威爾模型,提出修正的系統鑑別與建模策略,使麥斯威爾磁滯模型鑑別適用於系統具有殘餘應力或殘餘電荷的狀況,不再只侷限於初始值等於零的特殊情況;此文提出之磁滯模型修正策略,可利用鍵結圖之物理結構整合於建構壓電致動器的機電動態系統,普遍應用在基於逆動態模型(Inversed dynamic model)的前饋控制上,以有效改善設計控制器的效能。

摘要 I
誌謝辭 II
目錄 III
圖目錄 V
表目錄 VIII
第一章 緒論 1
1.1. 前言 1
1.2. 研究動機 2
1.3. 論文大綱 4
第二章 壓電致動器簡介 5
2.1. 壓電效應(Piezoelectric Effect)的發現 5
2.2. 壓電效應原理與基本特性 6
2.3. 壓電致動器(Piezoelectric Actuator) 7
2.4. 壓電致動器控制的潛在問題 8
第三章 磁滯效應與壓電致動器模型建構 11
3.1. 壓電致動器之機電原理 12
3.2. 傳統麥斯威爾磁滯模型建構法則 14
3.3. 壓電致動器模型 16
第四章 壓電致動器修正模型之建構策略 21
4.1. 含有初始狀態的壓電致動器模型 22
4.2. 初始狀態對壓電致動器模型的影響 28
4.3. 壓電致動器模型鑑別概念 29
4.3.1. 初始狀態衰減(decay)原理 29
4.3.2. 以程式模擬驗證理論之正確性 35
4.3.3. 以實驗結果驗證理論之正確性 37
4.4. 壓電致動器模型鑑別策略 38
4.4.1. 限制條件 39
4.4.2. 壓電致動器與磁滯模型建構 40
4.5. 壓電致動器逆模型(Inversed-model)控制策略[17] 43
第五章 壓電致動器模型建構與實驗結果 45
5.1. 實驗硬體架構 45
5.2. 磁滯模型建構與控制流程 46
5.3. 實驗結果與效能評析 47
5.3.1. 電腦模擬結果 47
5.3.2. 實驗效能評比 51
第六章 結論與未來研究方向 54
6.1. 結論 54
6.2. 未來研究方向 55
6.1.1. 即時(real-time)模型鑑別與控制[18] 55
6.1.2. 設計高等控制器 55
6.1.3. 考慮潛變(Creep)效應對模型的影響[20] 56
6.1.4. 高頻動態的模型修正[21][22] 56
6.1.5. 利用前饋控制提高定位速度與精度[23]∼[40] 57
參考文獻 59
Appendix A 64
Appendix B 68
Appendix C 76
Appendix D 78

1.井澤實勢,杜光宗編譯,“精密定位技術及其設計技術”,建宏出版社,1992。
2.馮榮豐主編,“奈微米工程-精密製程與量測技術”,滄海書局,2002。
3.PI manual, “MicroPositioning, NanoPositioning, NanoAutomation Solutions for Cutting-Edge Technologies.”
4.H. Aoyama, O. Fuchiwaki, “Flexible Micro-Processing by Multiple Micro Robots in SEM,” IEEE International Conference on Robotics and Automation, May 2001.
5.A. Bergander, J.-M. Breguet, C. Schmitt and R. Clavel, “Micropositioners for Microscopy Applications based on the Stick-Slip Effect,” IEEE International Symposium on Micromechatronics and Human Science, 2000.
6.T. Fukuda and F. Arai, “Prototyping Design and Automation of Micro/nano Manipulation System,” IEEE International Conference on Robotics and Automation, April 2000.
7.N.W. Hagood, W.H. Chung, and A. von Flotow, “Modeling of Piezoelectric Actuator Dynamics for Active Structural Control,” Journal of Intelligent Materials, Systems, and Structures. Vol. 1. pp. 327-354, July 1990.
8.F. Lee, T.J. Moon, and G.Y. Masada, “Extended Bond Graph Reticulation of Piezoelectric Continua,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 117, no. 1, March, pp. 1-7, 1995.
9.T.D. Leigh and D.C. Zimmerman, “An Implicit Method for the Nonlinear Modeling and Simulation of Piezoceramic Actuators Displaying Hysteresis,” ASME Smart Structures and Materials, AD-vol. 24, pp. 57-63, 1991.
10.M. Jouaneh and H. Tian, “Accuracy Enhancement of a Piezoelectric Actuator with Hysteresis,” ASME/JAPAN/USA Symposium on Flexible Automation, vol. 1, pp. 631-637, 1992.
11.D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, “System Dynamics: A Unified Approach” A Wiley-Interscience Publication, 1990.
12.D. Karnopp, “Computer Models of Hysteresis in Mechanical and Magnetic Components,” J. Franklin Inst., 316, No. 5, 405-415, 1983.
13.M. Goldfard and N. Celanovic, “Modeling piezoelectric stack actuators for control of micromanipulation,” IEEE Contr. Syst. Mag., vol. 17, pp.69-79, 1997.
14.H. Adriaens, W. L. de Koning, and R. Banning, “Modeling Piezoelectric Actuators,” IEEE/ASME Transactions on Mechatronics, Vol. 5, No. 4, Ddec. 2000.
15.D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, “System Dynamics: A Unified Approach” A Wiley-Interscience Publication, 1990.
16.D. Karnopp, “Computer Models of Hysteresis in Mechanical and Magnetic Components,” J. Franklin Inst., 316, No. 5, 405-415, 1983.
17.G. Tao and P. V. Kokotovic, “Adaptive Control of Systems with Actuator and Sensor Nonlinearities,”John Wiley & Sons, Inc., New York, 1996.
18.K. Kuhnen, and H. Janocha, “Real-time compensation of hysteresis and creep in piezoelectric actuators.” Sensors and Actuators 79 (2000) 83—89.
19.S. Takahashi and Y. Sasaki and M. Umeda and K. Nakamura and S. Ueha, “Nonlinear behavior in piezoelectric ceramic transducers” Applications of Ferroelectrics, 2000. ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on , Volume: 1 , 2000.
20.H. Richter, E.A. Misawa, and D.A. Lucca, ”Characterization of nonlinearities in a piezoelectric positioning device.” IEEE International Conference on Control Applications, pp. 717-720, October, 1997, Hartford, CT.
21.Dongwoo Song and C. James Li, “Modeling of Piezo Actuator's Nonlinear and Frequency Dependent Dynamics,” Mechatronics, Vol. 9, Issue 4, June 1999, p 391-410.
22.R. Ben Mrad and H. Hu, 2002, "A Model for Voltage-to-Displacement Dynamics in Piezoceramic Actuators Subject to Dynamic Voltage Excitations," IEEE/ASME Transactions on , Volume: 7 Issue: 4 , Dec 2002 ,Page(s): 479 -489.
23.Meckl, P. H., and Seering, W. P., “Controlling Velocity-Limited Systems to Reduce Residual Vibration,” Proceedings of the 1988 IEEE International Conference on Robotics and Automation, Apr. 25-29 1988,Philadelphia, Pa.
24.Meckl, P.H.; Kinceler, R. ”Robust motion control of flexible systems using feedforward forcing functions” Control Systems Technology, IEEE Transactions on , Volume: 2 Issue: 3 , Sept. 1994 Page(s): 245 -254.
25.Singer, N.C.; Seering, W.P. “Preshaping command Inputs to Reduce System Vibration” ASME Journal of Dynamic Systems, Measurement and Control, Vol. 112, Mar., pp.76-82.
26.Hyde, J. M.; Seering, W.P. “Using input command pre-shaping to suppress multiple mode vibration” Robotics and Automation, 1991. Proceedings., 1991 IEEE International Conference on , 1991 Page(s): 2604 -2609 vol.3
27.Singhose, W.E.; Seering, W.P.; Singer, N.C. “Shaping inputs to reduce vibration: a vector diagram approach” Robotics and Automation, 1990. Proceedings., 1990 IEEE International Conference on , 1990 Page(s): 922 -927 vol.2
28.Singer, N.C.; Seering, W.P. “Design and comparison of command shaping methods for controlling residual vibration” Robotics and Automation, 1989. Proceedings., 1989 IEEE International Conference on , 14-19 May 1989 Page(s): 888 -893 vol.2
29.Singhose, W.E.; Seering, W.P.; Singer, N.C.” Shaping inputs to reduce vibration: a vector diagram approach” Robotics and Automation, 1990. Proceedings., 1990 IEEE International Conference on , 1990 Page(s): 922 -927 vol.2
30.Singhose. W. E.; Seering, W. P., & Singer, N. C. “Residual vibration reduction using vector diagrams to generate shaped inputs” J. Mech. Des., 1994, 116(2), 654-659.
31.Wie, B.; Sinha. B. R.; & Liu, Q. “Robust time-optimal control of uncertain structural dynamic systems” J. Guidance, Control. and Dyn., 1993, 16(5)980-983.
32.Singer, N.C.; Pao, L.Y.; Singhose, W.E.; Seering, W.P. “An efficient algorithm for the generation of multiple-mode input shaping sequences” Control Applications, 1996., Proceedings of the 1996 IEEE International Conference on , 1996 Page(s): 373 -378.
33.Singhose, W.E.; Grosser, K. “Limiting excitation of unmodeled high modes with negative input shapers” Control Applications, 1999., Proceedings of the 1999 IEEE International Conference on , 1999 Page(s): 545 -550
34.Singhose, T., & Heppler, G.R. “Shaped input control of a system with multiple modes” J. Dyn. Systems, Measurement and Control, 1993 115(3),341-347
35.Tuttle, T. D., & Seering, W. P. “A zero —placement technique for designing shaped inputs to suppress multiple-mode vibration.” Proc. American Control Conf., Baltimore, MD, 1994, pp. 2533-2537.
36.Pao, L. Y. “Multi-input shaping design for vibration reduction.” Automatica, 1999, 35, pp. 81-89
37.Cutforth, C. F. and L. Y. Pao. “A modified method for multiple actuator input shaping.” Proc. Of the American Control Conf., San Diego, CA,1999,pp. 66-70.
38.Baumgart, M.D.; Pao, L.Y.” Cooperative multi-input shaping for arbitrary inputs” American Control Conference, 2001. Proceedings of the 2001 , Volume: 1 , 2001 Page(s): 275 -280 vol.1
39.Juyi Park, Pyung-Hun Chang. “Learning Input Shaping Technique for Non-LTI Systems” ASME Journal of Dynamic Systems, Measurement and Control, June 2001, Vol. 123, No. 2, pp.288-293.
40.Singhose. W. E.; Singer, N. C.; &Seering. W. P. “Time-Optimal negative input shapers. J. Dyn. Systems. Measurement and Control. 1997 119(2).198-205.
41.T.-J. Yeh and K. Youcef-Toumi, 1998, “Adaptive Control of Nonlinear, Uncertain Systems using Local Function Estimation,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 120, No. 4, pp. 429-438.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔