(3.234.221.67) 您好!臺灣時間:2021/04/11 16:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳新雨
研究生(外文):Hsin-Yu Wu
論文名稱:生醫微流晶片應用之動電式微混合器設計
論文名稱(外文):An Electrokinetic Micromixer for Micro-fluidic Bio-chip Application
指導教授:劉承賢劉承賢引用關係
指導教授(外文):Cheng-Hsien Liu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:63
中文關鍵詞:電滲流ζ-勢位場效流控制混合
外文關鍵詞:Electroosmotic flowζ-potentialField-effect flow controlMixing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:145
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
本研究成功地設計一嶄新的微混合器。此微混合器是藉由類似電晶體中的場效應來操控微流道壁面之ζ電位,並配合一系列非對稱鯡骨式電極排列所組合而成。與其它國外設計相比,此微合器不需要極複雜的三維蜿蜒微流道結構與外加來能源來產生類似混沌流場,就能達到混合。其中,影響電滲流的幾個重要參數,諸如:緩衝液的pH值與其離子濃度等對ζ電位的影響,而其關係式於本論文中已被推導。經由關係圖示詳加探討,發現於低pH值和低離子濃度下,較好操控ζ電位。另外,非均勻ζ電位對流率、誘導出之壓力梯度和流速等之數學模型也已被推導及詳加討論,並經由CFDRC軟體模擬結果得之結合非對稱鯡骨式電極排列和場效應ζ電位控制,確實有良好的混合效果。此微混合器之製程步驟也被闡述。實驗中,我們利用螢光顯微鏡來觀察此微混合器和對照組(純擴散)之混合過程。並藉由Matlab定量分析結果顯示此微混合器有較佳混合效率。此動電式混合器是經由非對稱鯡骨式電極排列(空間上)與週期性施加電壓(時間上),來操控微流道壁面上之局部區域ζ電位,近而改變此區域之流場。這使得軸向與非軸向旋渦狀流場可以存在於微流道內任何一處,因此流體間的混合就不受限於擴散效應。所以兩種或多種不同待混合流體之間的接觸面積能有效地增加,使得能在短時間和短距離內可以快速且均勻混合。
A novel microfluidic mixer based on periodically varying the ζ-potential on the microchannel walls through the field-effect control and asymmetric-herringbone electrode design has been developed and demonstrated successfully. In contrast to previous micromixer work from other groups, this micromixer does not need complex three-dimensional serpentine microstructure or external pumps to generate chaos-like flow. The influences of parameters such as pH value, ionic concentrations of the electrolyte, and radial electric field on the ζ-potential are discussed in thesis. They indicate that it is easier to modulate ζ-potential on the microchannel wall in the condition of a lower pH value and lower concentration of the buffer solution. The mathematical models for the influence of the nonuniform ζ-potential on the velocity profile, the volumetric flow rate, and the induced pressure distribution in a rectangular cross-section microchannel are also derived and show the mixing effect of varying ζ-potential. Numerical simulation results utilizing CFDRC show the good mixing efficiency for our micromixer design with asymmetric herringbone electrodes and periodic voltage control. The microfabrication process for our electrokinetic micromixer has been developed successfully. Via the quantitative analysis of Image Processing Toolbox in Matlab, experimental results successfully demonstrate a great mixing enhancement compared with diffusion effect only Our electrokinetic micromixer design can enhance the mixing effect by appropriate modulation of the ζ-potential, which results in manipulating local flow fields. The work reported here considers for the first time temporal/spatial ζ-potential modulation for microfluidic mixer applications.
摘要 I
Abstract II
Acknowledgements III
Table of Contents IV
List of Figures VI
List of Tables X
Chapter
1. Introduction 1
1.1. Backgrounds and Motivation 1
1.2. Survey of Existing Micromixers 3
2. Development of Electrokinetic Micromixer 10
2.1. Electrokinetic Theory 10
2.1.1. Electrical Double Layer and ζ-potential 10
2. 1.2. Electroosmotic Flow and Pressure-driven Flow 13
2.2. Design Concept 15
2.3. Analyses of Electroosmotic Flow (EOF) 19
2. 3.1. The Poisson—Boltzmann Equation for the EDL Potential 19
2. 3.2. Electroosmotic flow field with Nonuniform ζ-potential 28
3. Fabrication of Electrokinetic Micromixer 31
3.1. Fabrication Processes 31
3.2. Fabrication Results 36
4. Experimental Results 37
4.1. Experimental Apparatus Setup 37
4.2. Experimental Procedure and Discussion 39
5. Conclusion and Future work 47
5.1. Conclusions 47
5.2. Future Work 48
6. References 50
[1] D. Jaeggi, B. L. Gray, N. J. Mourlas, B. P. van Drieënhuizen, K. R. Williams, N. I. Maluf, and G. T. A. Kovacs, “Novel Interconnection Technologies for Integrated Microfluidic Systems,” Solid-State Sensor and Actuator Workshop, Hilton Head, SC, pp. 112-115, 1998.
[2] M. A. Stremler, M. G. Olsen, B. H. Jo, R. J. Adrian, H. Aref, D.J. Beebe, “Chaotic Mixing in Microfluidic Systems,” Solid-State Sensor and Actuator Workshop, Hilton Head, SC, pp. 187-190, 2000.
[3] R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, Hassan Aref, and D. J. Beebe, “A passive micromixer in a three-dimensional serpentine microchannel,” J. Microelectromech. Syst., vol.9, pp.190-197, June 2000.
[4] J. Branebjerg, P. Gravesen, J. P. Krog, C. R. Nielsen, “Fast mixing by lamination,” Proc. IEEE MEMS Workshop, San Diego, CA, pp.441-446, 1996.
[5] R. Miyake, T. S. J. Lammerink, M. Elwenspoek, J. H. J. Fluitaman, “Micro mixer with fast diffusion,” Proc. 7th Int. Conf. Solid-State Sens. and Actuators, pp.248-253, 1993.
[6] A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, G. M. Whitesides, “Chaotic mixer for micro channels,” Science, vol.295, no.5555, pp.647-651, 2001.
[7] T. J. Johnson, D. Ross, and L. E. Locascio, “Rapid Microfluidic Mixing,” Anal. Chem., 74 (1), 45 -51, 2002.
[8] J. Evans, D. Liepmann, and A. P. Pisano, “Planar laminar mixer,” Proc. IEEE MEMS Workshop, Nagoya, Japan, pp. 96-101, 1997.
[9] J.-H. Tsai and L. Lin, “Active Microfluidic Mixer and Gas Bubble Filter Driven by Thermal Bubble Micropump,” Sensors and Actuators, Vol. A 97-98, pp. 665-671, 2002.
[10] J. W. Choi and C. H. Ahn, “An active micro mixer using electrohydrodynamic (EHD) convection,” Proc. Solid-State Sens. and Actuator Workshop, Hilton Head Island, SC, pp. 52-55, June 2000.
[11] J. Voldman, M. L. Gary, and M. A. Schimdt, “An integrated liquid mixer/valve, ” J. Microelectromech. Syst., vol.9, no.3, pp.295 -302, Sept. 2000.
[12] K. Hosokawa, T. Fujii, and I. Endo, “Droplet-based nano/picoliter mixer using hydrophobic microcapillary vent,” Proc. 12th Int. Conf. on Micro Electro Mechanical Systems, Orlando, FL, pp.388-393, 1999.
[13] A. A. Deshmukh, D. Liepmann, and A. P. Pisano, “Characterization of a micro-mixing, pumping and valving system,” Proc. 11th Int. Solid-State Sens. and Actuators, Munich, Germany, pp. 950-953, 2001.
[14] R. M. Moroney, R. M. White, and R. T. Howe, “Ultrasonically induced microtransport, ” Proc. IEEE MEMS Workshop, Nara, Japan, pp.277-282, 1991
[15] V. Vivek, Y. Zeng, and E. S. Kim, “Novel acoustic-wave micromixer, ” Proc. 13th Annual Int. Conference on Micro Electro Mechanical Systems, Miyazaki, Japan, pp. 668-673, Jan. 2000.
[16] Z. Yang, H. Goto, M. Matsumoto, and R. Maeda, “Ultrasonic micromixer for microfluidic systems,” Proc. 13th Annual Int. Conference on Micro Electro Mechanical Systems , Miyazaki, Japan, pp. 80-85, Jan. 2000.
[17] H. Suzuki and C.-M. Ho, “A magnetic force driven chaotic micro-mixer,” Proc. 15th Int. Conf. on Micro Electro Mechanical Systems, MEMS''02, Las Vegas, NV, pp.40-43, Jan. 2002.
[18] Y.-K. Lee, J. Deval, P. Tabeling, and C.-M. Ho, “Chaotic mixing in electrokinetically and pressure driven micro flow,” Proc. 14th Int. Conf. on Micro Electro Mechanical Systems, MEMS’01, Interlaken, Switzerland, pp. 483-486, Jan. 2001.
[19] J. Deval, P. Tabeling, and C.-M. Ho, “A dielectrophoretic chaotic mixer,” Proc. 15th Int. Conf. on Micro Electro Mechanical Systems, MEMS''02, Las Vegas, NV, pp.36-39, Jan. 2002.
[20] R.J. Hunter, Zeta potential in Colloid Science, Principles and Applications, Academic Press, New York, 1981.
[21] R. B. M. Schasfoort, S. Schlautmann, J. hendrikse, and A.van den Berg, “Field-Effect Flow Control for Microfabricated Fluidic Networks,” Science, 286, pp. 942-945, 1999.
[22] A. D. Stroock, M. Weck, D. T. Chiu, W. T. S. Huck, P. J. A. Kenis, R. F. Ismagilov, G. M. Whitesides, “Patterning Electro-osmotic Flow with Patterned Surface Charge,” Phys. Rev. Lett., 84, pp. 3314-3317, 2000.
[23] M. A. Hayes and A. G. Ewing, “Electroosmotic Flow Control and Monitoring with an Applied Radial Voltage for Capillary Zone Electrophoresis,” Anal. Chem., Vol. 64, pp. 512-516, 1992.
[24] M. A. Hayes, I. Kheterpal, and A. G. Ewing, “Effects of Buffer pH on Electroosmotic Flow Control by an Applied Radial Voltage for Capillary Zone Electrophoresis,” Anal. Chem., Vol. 65, pp. 27-31, 1993.
[25] A. E. Herr, J. I. Molho, J. G. Santiago, M. G. Mungal, and T. W. Kenny, “Electroosmotic Capillary Flow with Nonuniform Zeta Potential,” Anal. Chem., 72, pp. 1053-1057, 2000.
[26] D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane),” Anal. Chem., Vol. 70, pp. 4974-4984, 1998.
[27] D. C. Duffy, O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,” J. Micromech. Microeng. Vol. 9, pp. 211—217, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔