跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/13 22:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游英凱
研究生(外文):Ying-Kai Yu
論文名稱:鑽石薄膜表面聲波濾波器-聲波傳遞與交指叉電極設計耦合研究
論文名稱(外文):Diamond SAW Filter-Study of Acoustic Wave Propagation and Interdigital Transducers Design and Coupling
指導教授:蔡宏營陳榮順陳榮順引用關係
指導教授(外文):Hung-Yin TsaiRong-Shun Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:138
中文關鍵詞:表面聲波元件耦合模型表面聲波濾波器交指叉電極
外文關鍵詞:Surface Acoustic Wave DeviceDiamond SAW filterESPCoupling-of-Modes model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:429
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:0
微機電系統(Micro-Electro-Mechanical System,簡稱MEMS)是當前科技界公認本世紀最具發展潛力的研究領域之一。當今微機電技術的發展可歸功於半導體製程技術的蓬勃發展,卻因此而更加發揚光大,不再限於電的特性,更兼顧了機械、光學、熱力學、流體力學等特性,逐漸的發展出不同性質的產品,其中行動通訊領域更是其中一項應用。平日最常用的行動通訊系統首推行動電話,它在短短幾年中成為全球發展最快速的展業,原因乃是因為電信的自由化與其使用學習門檻很低。
行動通訊的要求越輕、越小、越省電,希望將大多數的元件整合在一起,以減低元件數量,降低製造成本,但是到目前為止,仍不會缺少的元件包括:低雜訊放大器(LNA)、表面聲波濾波器(SAW Filter)、多工器(Duplexer)、電壓控制震盪器(VCO)、調解電壓器(Mod/Demodulator)及訊號處理單元。
本文的目的乃是利用鑽石薄膜沈積技術,製作鑽石薄膜表面聲波濾波器,用來改進目前以線寬不斷縮小的方法,來達到較高頻段濾波效果的設計,多加入了鑽石薄膜,其聲波傳遞速率以倍數成長,如此一來,當元件需求往高頻段發展時,受其限制會因此減低。並利用當前常用的分析模型,從壓電基板觀點、交指叉電極能量觀點,以達到其最佳設計之目標,再加上製程部分的整合,與高頻元件量測機台的配合,期望能以目前微機電技術製作出一高Q值、高訊號/雜訊比、且濾波效果良好之輕薄短小的鑽石薄膜表面聲波濾波器。

Micro-Electro-Mechanical System (MEMS) is one of the potential research topics in this century and has rapidly grown in many different kinds of products, including communication. The advantages of the portable communication are lighter, smaller, and power-saved. It is until now the SAW devices are essential in mobile phone as the other devices are integrated in a chip. This study analyzes and designs a basic diamond film surface acoustic wave filter to obtain higher frequency filtering effect by reducing the line width of the electrodes. Since the diamond has the highest speed of the acoustic wave in all materials, the process limitation of the line width of electrode is not restricted if the higher frequency devices are required.
The effective surface permittivity method is successfully used in this study to estimate the values of the electromechanical coupling coefficient for bulk materials and multi-layer structures. The theoretical analyses of the three models show that the frequency responses of the different SAW devices can be simulated through specifying the parameters of each device. Furthermore, it shows that the simulation results agree well with the experimental results.

Abstract I
中文摘要 II
誌謝 III
Contents IV
Figure and Table Contents VII
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Review 7
1.3 Contents of This Thesis 8
Chapter 2 System Constitution and Elemental Analysis Results 10
2.1 Introduction of the SAW Devices 10
2.1.1 SAW Filter 11
2.1.2 SAW Resonator 11
2.1.3 Other Applications of Surface Acoustic Devices 12
2.2 Substrate Material Properties of SAW Devices 13
2.3 Selection, Simulation, and Analysis of Substrate Material 15
2.3.1 Effective Surface Permittivity (ESP) Method 16
2.3.2 Simulation Results and Discussion 24
Chapter 3 Analytic Methods for the SAW Filter Design 45
3.1 Analytic Methods for the SAW Filter Design 45
3.2 Delta-function Model Analysis 47
3.3 Mason equivalent circuit of IDT Electrodes 49
3.3.1 IDT Equivalent Circuit Neglecting Finger Reflections 50
3.3.2 Equivalent Circuit for an IDT with Finger Reflections 52
3.3.3 Equivalent Circuit for a Transmission Delay Line 55
3.3.4 Equivalent Circuit for a Reflection Grating 56
3.3.5 Simulation Results of All Integral Equivalent Circuit 57
Chapter 4 SAW Filter Design by Crossed-Field Model 60
4.1 Basic SAW Filter Equivalent 60
4.2 Basic SAW Resonator Equivalent 64
4.3 Simulation Results of Basic SAW Filter Design 68
Chapter 5 Coupling of Modes Theory 71
5.1 Fundamental of Coupling IDTs 71
5.2 Solution of COM Model 74
5.3 Simulation Results of COM Model 75
Chapter 6 Fabrication Processes and Measurement Instruments 78
6.1 Mask Design 78
6.2 Fabrication Processes 84
6.3 Measurement Instruments 88
Chapter 7 Experimental Results and Comparisons 91
7.1 OM Micrographs of SAW Devices 91
7.2 AFM Micrograph of SAW Devices 96
7.3 Measurement Results 98
7.3.1 Effect of IDT Finger Pairs and Overlap 99
7.3.2 Effect of Delay Line and Line Width 99
7.3.3 Effect of Center and Lateral Gratings 100
7.3.4 Effect of Apodized IDTs 100
7.3.5 Frequency of One-port Resonators 101
7.4 Comparisons 128
Chapter 8 Conclusions and Future Work 136
8.1 Conclusions 136
8.2 Future Work 137
References 138

[1] “2002 Symposium of RF Filters Technology and Applications,” Science and Technology Project of Ministry of Economic Affairs, ROC., 2002.
[2] R. Berman and M. Martinez, “Diamond Research,” Industrial Diamond Review, 1976.
[3] C. M. Sung, “Superhard Materials,” Chwa Taiwan Inc., 2000.
[4] Sumitomo Electric, “Diamond SAW Device Technology,” http://www.sumitomoelectricusa.com.
[5] L. Rayleigh, “On Waves Propagating Along the Plane Surface of an Elastic Solid,” Proceedings London Mathematical Society, vol. 7, pp. 4-11, 1885.
[6] A. E. H. Love, “Some Problems of Geodynamics,” Cambridge, 1911.
[7] K. Sezawa, “Dispersion of Elastic Waves Propagated on the Surface of Stratified Bodies and the M2 Waves (Sezawa wave),” Ibid., 29, 1951.
[8] R. M. White, “Surface Elastic Waves,” Proceedings of the IEEE, vol. 58, pp. 1238-1276, 1970.
[9] J. H. Wang, and R. S. Huang, “A Feasibility Study of Molecular Sensor Using Surface Acoustic Wave Device,” MS Thesis, Institute of Electronics Engineering, NTHU, 1999.
[10] K. Minoru, W. Takayuki, F. Akira, and H. Toshiro, “Surface Acoustic Wave Atomizer,” Sensors and Actuators, A: Physical, vol. 50, pp. 64-74, 1995.
[11] K. Minoru, F. Akira, and H. Toshiro, “Characteristics of Liquids Atomization Using Surface Acoustic Wave,” International Conference on Solid-State Sensors and Actuators, vol. 2, pp. 801-804, 1997.
[12] T. Gryba and J. E. Lefebvre, “Optimisation of MQW Structures for Acousto-optic Absorption Modulators,” Optoelectronics, IEE Proceedings., vol. 141, pp. 62-64, 1994 .
[13] A. Sano, Y. Rlatsui, and S. Shiokawa, “A New Manipulator Based on Surface Acoustic Wave Streaming,” Ultrasonics Symposium, IEEE Proceedings., vol. 1, pp. 467-470, 1997.
[14] K. Asai, M. K. Kurosawa, and T. Higuchi, “Evaluation of the Driving Performance of a Surface Acoustic Wave Linear Motor,” Ultrasonics Symposium, 2000 IEEE Proceedings., vol. 1, pp. 675-679 2000.
[15] L. Wu, “Electronic Ceramic: Piezoelectric,” Chuan-Hsin Information Co. Ltd., 1994.
[16] J. M. Lien, and C. C. Sung, “The Analysis of Coupled-of-Mode for Surface Acoustic Wave Resonators/Filters,” MS Thesis, Department of Engineering Science and Ocean Engineering, NTU, 2002.
[17] R. F. Milsom, N. H. Reilly, and M. Redwood, “Analysis of Generation and Detection of Surface And Bulk Acoustic Waves by Interdigital Transducers,” IEEE Transactions On Sonics Ultrasonics, vol. 24, pp. 147-166, 1977.
[18] K. A. Ingebrigtsen, “Surface Waves in Piezoelectrics,” Journal of Applied Physical, vol. 40, pp. 2681-2686, 1969.
[19] V. Y. Zhang, J. E. Lefebvre, and T. Gryba, “A Unified Formalism Using Effective Surface Permittivity to Study Acoustic Waves in Various Anisotropic and Piezoelectric Multilayers,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 48, pp. 1449-1461, 2001.
[20] E. L. Adler, “Matrix Methods Applied to Acoustic Waves in Multilayers,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 41, pp. 485-490, 1990.
[21] V. Y. Zhang, J. E. Lefebvre, and T. Gryba, “ODE Matrix Formalism and Surface Permittivity Function for Surface Acoustic Waves in Piezoelectric Multilayers,” unpublished.
[22] Auld, Bertram Alexander, “Acoustic Fields and Waves in Solids,” New York, Wiley, 1973.
[23] C. K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless Communications,” San Diego, Academic Press, 1998.
[24] W. P. Mason, “Electromechanical Transducers and Wave Filter,” van Nastrand-Reinhold, 2nd Edition, Princeton, New Jersey, 1948.
[25] W. R. Smith, H.M. Gerard, J.H. Collins, T.M. Reeder, and H.J. Shaw, “Analysis of Interdigital Surface Wave Transducers by Use of an Equivalent Circuit Model,” IEEE Transactions on Microwave Theory and Techniques, vol. 17, pp. 856-864, 1969.
[26] W. R. Smith, H.M. Gerard, W.R. Jones, “Analysis and Design of Dispersive Interdigital Surface Wave Transducers,” IEEE Transactions on Microwave Theory and Techniques, vol. 20, pp. 458-471, 1972.
[27] G. W. Farnell and E. A. Adler, “An Overview of Acoustic Surface Wave Technology,” Final Report to Communications Research Center, Ottawa, Canada, DSS Contract 6001-3-4406, 1973.
[28] W. R. Smith, “Experimental Distinction between Crossed-field and In-line Three-port Circuit Models for Interdigital Transducer,” IEEE Transactions on Microwave Theory and Techniques, vol. 22, pp. 960-964, 1974.
[29] K. Y. Hashimoto, “Surface Acoustic Wave Devices in Telecommunications : Modelling and Simulation,” Springer Verlag, 2000.
[30] X. Perois, M. Solal, J.B. Briot, S. Chamaly, M. Doisy, P.A. Girard, “An Accurate Design and Modeling Tool for the Design of RF SAW Filters,” IEEE Ultrasonics Symposium Proceedings, vol. 1, pp. 75-80, 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top