(3.227.235.183) 您好!臺灣時間:2021/04/18 11:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:孫銘鴻
研究生(外文):Ming-Hung Sun
論文名稱:微卡榫應用於光纖與光波導耦合之機制研究
論文名稱(外文):Research of the Microconnectors for the Alignment of Optical Waveguides and Fibers Device
指導教授:江國寧
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:90
中文關鍵詞:光學封裝有限單元模擬接觸分析暫態分析
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  於光學模組之發展中,其技術之關鍵門檻在於封裝過程中之對位(Alignment)耦合問題。被動式對位為適合量產與減低封裝成本的方式之一,其中V型槽及覆晶結構最常被用來作為光纖和光波導元件之對位耦合,然覆晶結構於組裝時可能會造成耦合效率降低。本研究利用暫態有限單元法分析技術,探討一光學模組結構於組裝時之物理力學行為。並利用對於組裝過程及組裝完成之力學行為的瞭解,加速此光學模組之設計時程。
  此光學模組主要包括光波導晶片及V型槽對位晶片,二晶片間憑藉微加工技術製作之卯釘狀卡榫及薄膜結構連接。於組裝過程中,包含了極為複雜之接觸力學行為。本研究首先對於顯性有限元素法之計算時間增量及沙漏型能量之控制作討論,以利於之後模組組裝力學分析之進行。對於整個模組之邊界條件及負載,本研究採用二分之一對稱模型,並利用壓力負載及指定移動之方式完成二晶片組裝。而組裝過程中,此光學模組設定了三組接觸可能發生處,本研究就此三組接觸可能發生處產生之接觸力和時間關係作一深入討論。並就卯釘狀卡榫頸部高度做參數化分析,討論此參數對於三組接觸力之影響及敏感度。

第一章 緒論
1.1 研究動機……..……………………………………………… 1
1.2文獻回顧….………………………………………….……… 3
1.3研究目標……….…...……………………………………….. 7
第二章 理論分析
2.1光通訊理論……..…………………………………………… 8
2.1.1平面光波導基本理論..…………………………..……... 8
2.1.2光纖導波管……………………..………………..……... 10
2.1.3光纖與光波導之耦合…………….……………….……. 11
2.2有限元素法基本理論……….………………………………. 12
2.2.1接觸理論(Contact Theory)……………………………… 14
2.2.2高斯積分法(Gauss Quadrature)……….………………... 17
2.2.3零能量模式(Zero Energy Mode)……….………………. 17
2.2.4時間增量(Time Step)…………………………………… 19
2.2.4時間積分(Time Integration)……………………………. 21
第三章 研究方法
3.1隱性有限元素法分析….……………………………………. 23
3.2顯性有限元素法分析……………………………………….. 24
3.2.1模型簡化………………………………………………... 25
3.2.2有限元素模型建立…..…………………………………. 26
3.2.3邊界條件與參數設定…………………………………... 26
3.2.4接觸設定………………………………………………... 28
3.2.5參數化分析……………………………………………... 30
第四章 分析結果與討論
4.1時間增量…………………………………………………….. 31
4.2邊界條件與負載之設定與討論…………………………….. 32
4.2.1壓力之設定與討論……………………………………... 32
4.2.2指定移動設定與討論……………………………….….. 34
4.3動能、位能與沙漏型能量分析討論……………………….. 35
4.4組配過程之應力分析……………………………………….. 37
4.4.1接觸力分析……………………………………………... 39
4.4.2卯釘狀卡榫和薄膜應力分析……………………….….. 42
4.4.3光波導應力分析…………………………………….….. 43
4.4.4晶片應力分析 ………………………………………….. 44
4.5結果與討論………………………………………………….. 45
第五章 結論與未來展望
參考文獻……………………………………………………. 48

[1] R. Moosburger and K. Petermann, ” 4×4 Digital Optical Matrix Switch Using Polymeric Oversized Rib Waveguides,” IEEE Photon. Technol. Lett., vol. 10, no. 5, pp.684-686, 1998.
[2] K. Kurata, “Mass Production Techniques for Optical Modules,” ECTC, Washington, pp.572-580, 1998.
[3] E. J. Murphy, “Fiber Attachment for Guided Wave Devices,” J. Lightwave Technol., vol. 6, no. 6, pp.862-871, 1988.
[4] N. Kaou, V. Armbruster, J. C. Jeannot, P. Mollier, H. Porte, N. Devoldère and M. De Labachelerie, “Microconnectors for the Passive Alignment of Optical Waveguides and Ribbon Optical Fibers,” Micro Electro Mechanical Systems, 2000. The Thirteenth Annual International Conference, pp.692-697, 2000.
[5] C. H. Bulmer, S. K. Sheem, R. P. Moeller and W. K. Burns, “High-Efficiency Flip-Chip Coupling Between Single-Mode Fibers and LiNbO3 Channel Waveguides,” Appl. Phys. Lett., vol. 37, no. 4, pp.351-353, 1980.
[6] Y. Yamada, M. Kawachi, M. Yasu and M. Kobayashi, “Optical-Fiber Coupling to High Silica Channel Waveguides with Fiber-Guiding Grooves,” Electron Lett., vol. 20, no. 8, pp.313-314, 1984.
[7] Y. Yamada, M. Kawachi, M. Yasu and M. Kobayashi, “High-Silica Multimode Channel Waveguide Structure for Minimizing Fiber-Waveguide-Fiber Coupling Loss,” J. Lightwave Technol., vol. LT-4, no. 3, pp.277-282, 1986.
[8] H. Kaufmann, P. Buchmann, R. Hirter, H. Melchior and G. Guekos, “Self-Adjusted Permanent Attachment of Fibers to GaAs Waveguide Components,” Electron Lett., vol. 22, no. 12, pp.642-644, 1986.
[9] A. S. Holmes, J. Lewandowski and R. R. A. Syms, “Self-Aligning Guided Wave Optics Breadboard System,” Integrated Optics, IEE Colloquium, London, pp.6/1-6/4, 1989.
[10] G. Grand, H. Denis and S. Valette, “New Method for Low Cost and Efficient Optical Connections between Singlemode Fibres and Silica Guides,” Electron Lett., vol. 27, no. 1, pp.16-18, 1991.
[11] C. A. Jones, K. Cooper, M. W. Nield and J. D. Rush, “Hybrid Integration Using Silicon Optical Motherboards,” Microengineering and Optics, IEE Colloquium, pp.8/1-8/6, London, 1994.
[12] M. Kihara, S. Nagasawa, M. Takaya and T. Tanifuji, “A New Type of Demountable Optical Device For Coupling Single-Mode Planar Waveguides to a Multifiber Array Using Passive Alignment,” IEEE Photonics Technology Letters, vol. 7, no. 12, pp.1453-1455, 1995.
[13] C. Wei, A. Jarmolik, F. H. Groen, C. G. M. Vreeburg, L. Vanwassenhove, I. Moerman, P. Van Daele and R. Baets, “New Waveguide-Fiber Coupling Method For Fiber Arrays Based on Integrated Elliptic Couplers,” 22nd European Conference on Optical Communication, Oslo, Norway, pp.265-268, 1996.
[14] K. Katsura, M. Usui, N. Sato, A. Ohki, N. Tanaka, N. Matsuura, T. Kagawa, K. Tateno, M. Hikita, R. Yoshimura and Y. Ando, “Packaging for a 40-Channel Parallel Optical Interconnection Module with an Over-25-Gbit/s Throughput,” IEEE Transactions on Advanced Packaging, vol. 22, no. 4, pp.551-560, 1999.
[15] M. Usui, N. Sato, A. Ohki, N. Matsuura, N. Tanaka, K. Enbutsu, M. Amano, M. Hikita, T. Kagawa, K. Katsura and Y. Ando,”ParaBit-1:60-Gb/s-Throughput Parallel Optical Interconnect Module,” IEEE Electronic Components and Technology Conference, Las Vegas, pp.1252-1258, 2000.
[16] R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J-R. Kropp and F. Arndt, “Methods for passive Fiber Chip Coupling of Integrated Optical Devices,” IEEE Electronic Components and Technology Conference, Las Vegas, pp.238-243, 2000.
[17] M. De Labachelerie, N. Kaou, V. Armbruster, J-C. Jeannot, P. Mollier, H. Porte and N. Devoldère, “A Micromachined Connector for the Coupling of Optical Waveguides and Ribbon Optical Fibers,” Sensors and Actuators A, vol. 89, pp.36-42, 2001.
[18] S. T. Ku, “Reliability Analysis of Optical Fiber Array Modulus for Transceiver,” National Tsing Hua University Power Mechanical Engineering Master Thesis, 2002
[19] H. T. Ku, and K. N. Chiang, “Reliability Analysis of a New Type of Optical Fiber Array Modulus for Transceivers,” Thermal and Mechanical Simulation and Experiments in Micro-Electronics and Micro-Systems, France, pp.139-146, 2003.
[20] S. Law, T. Phan and L. Poladian, “Fibre Geometry and Pigtailing,” IEEE Electronic Components and Technology Conference, Orlando, pp.1447-1450, 2001.
[21] A. A. Bandar, “Stress-Induced Vertical Confinement of Light in Bulk GaAs and Si Substrates,” IEEE Photonics Technology Letters, vol. 8, no. 10, pp. 1358-1360, 1996.
[22] E. Lea and B. L. Weiss, “Photoelastic Waveguides in Silicon,” Electronics Letters, vol. 32, no. 17, pp. 1577-1579, 1996.
[23] E. Lea and B. L. Weiss, “Characteristics of Photoelastic Waveguides in SiGe/Si Heterostructures,” Electronics Letters, vol. 33, no. 4, pp. 292-293, 1997.
[24] M. Huang, “Stress Effects on the Performance of Optical Waveguides,” International Journal of Solids and Structures, vol. 40, pp. 1615-1632, 2003.
[25] J. C. Palais, “Fiber Optic Communications 4th Ed. ,” PrenticeHill International,Inc., New Jersey, 1998.
[26] R. D. Cook, D. S. Malkus and M. E. Plesha, “Concepts and Applications of Finite Element Analysis,” Wiley, New York, Third Edition.
[27] J. O. Hallquist, “LS-DYNA Theoretical Manual,” Livermore Software Technology Corporation, California, 1998.
[28] N. Kikuchi and J. T. Oden, “Contact Problems in Elasticity : A Study of Variational Inequalities and Finite Element Methods,” Philadelphia, pp.19-30, 1988.
[29] Z. H. Zhong, “Finite element procedures for contact-impact problems,” Oxford University Press, New York, 1993.
[30] “ANSYS/LS-DYNA User's Guide 6.1.” ANSYS, 2002.
[31] Y. Y. Zhu and S. Cescotto, “Unified and Mixed Formulation of the 8-node Hexahedral Elements by Assumed Strain Method,” Comput. Methods Appl. Mech. Engrg., vol. 129, pp. 177-184, 1996.
[31] D. P. Flanagan and T. Belytschko, “A Uniform Strain Hexahedron and Quadrilateral with Orthogonal Hourglass Control,” International Journal for Numerical Methods in Engineering, vol. 17, pp. 679-706, 1981.
[32] M. G. Pecht, R. Agarwal, P. Mcclusdey, T. Dishongh, S. Javadpour and R. Mahajan, “Electronic Packaging Materials and Their Properties,” CRC Press, New York Washington, pp.77, 1999.
[33] W. N. Sharpe, D. A. Lavan and R. L. Edwards, “Mechanical Properties of LIGA-Deposited Nickel for MEMS Transducers,” International Conference on Solid-State Sensors and Actuators, Chicago, pp.607-610, 1997.
[34] W. N. Sharpe and A. McAleavey, “Tensile Properties of LIGA Nickel,” The International Society for Optical Engineering Conference on Materials and Device Characterization in Micromachining Proc. Orlando, pp.130-137, 1998.
[35] E. Mazza, S. Abel and J. Dual, “Experimental Determination of Mechanical Properties of Ni and Ni-Fe Microbars,” Microsyst. Technol., vol. 2, pp. 197-202, 1996.
[36] T. Buchheit, T. Christenson, D. Schmale and D. Lavan, “Understanding and Tailoring the Mechanical Properties of LIGA Fabricated Materials,” MRS Symposium Proceedings, Boston, vol. 546, pp. 121-126, 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔