(3.236.228.250) 您好!臺灣時間:2021/04/19 23:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭子熒
研究生(外文):Tzu-Ying Kuo
論文名稱:三維微電極陣列於神經電信號之應用
論文名稱(外文):Development of the Three Dimensional Multi-Electrode Array for Neural Recording
指導教授:方維倫焦傳金焦傳金引用關係
指導教授(外文):Weileun FangChuan-Chin Chiao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:85
中文關鍵詞:微機電系統神經電信號三維微電極陣列SOI晶片
外文關鍵詞:MEMSBio-signal3D Multielectrode arraySOI wafer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:259
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
微電極的研究發展在國外約有30多年的歷史,一般普遍使用的單一電極,受限在一時間之內只能對極少數神經細胞做紀錄,以致對這些神經網路信號的傳遞一無所知,因此發展微電極陣列將有助於瞭解神經網路如何運作,由於三維微電極陣列最能有效接近待測神經細胞,並減少生物組織傷害,而得到較佳的神經電信號,但受限於半導體平面加工技術的限制,三維電極與導線不易整合,且各電極間的絕緣不易製作,因此如何成功的在三維電極陣列上製作導線,即是本研究的重要課題。
本文對各式微針頭形狀的製作進行研究,並透過自行設計製程,克服有極大高低差之三維微電極結構不易製作導線問題,利用局部絕緣、局部去除二氧化矽薄膜步驟,製作出包含具絕緣牆之三維微電極及二氧化矽包覆的傳導線,成功開發出間距100μm之10 × 10三維微電極陣列晶片,可應用於感測生物神經電信號。本文並提出三維微電極陣列晶片與前級放大器整合方式與製程,期能藉此有效提高感測神經電信號的效果。

The study of the electrical properties of neuronal networks is important for the characterization of their biological functions and behavior. The electrical activity of cells is mostly recorded by single electrodes, but only few cells can be monitored at the same time. Development of Multielectrode array contributes to understand function of neuronal networks. The geometry of 3D multielectrode array allows a good penetration of the electrodes into tissue, getting closer to the active cells and reduces damage of the cells when recording bio-signal, but combination of 3D multielectrode and signal line is a challenge by semiconductor process.
Based on the shape of micro-tip etch test process, this study develop a novel and simple process within three masks. Through this process avoiding the problem of high topology, the number of 10 ×10 multielectrode array that combination 3D multielectrode array with each signal line has been proposed successfully. Furthermore, this study intends to present the concept of integration of 3D multielectrode array with pre-amp. It can be expected the new design will improve the performance of 3D multielectrode array.

目錄
中文摘要 1
英文摘要 2
目錄 3
圖目錄 4
表目錄 6
第一章 前言 7
1-1 研究動機 7
1-2 研究背景及文獻回顧 8
1-2.1 神經電信號產生簡介 8
1-2.2 文獻回顧 10
1-3 研究目標 14
第二章 三維微電極陣列之設計 22
2-1 三維微電極陣列特性 22
2-2 三維微電極陣列設計考量 23
2-3 三維微電極陣列設計 24
第三章 微電極針頭製程與實驗 28
3-1 製程規劃與步驟 28
3-2 微電極針頭測試製程結果 29
3-3 微電極針頭測試製程問題與結果討論 31
第四章 三維微電極陣列製程與實驗 43
4-1 製程規劃 43
4-2 三維微電極陣列製程步驟 44
4-3 製程結果 45
4-4 製程問題與討論 47
第五章 量測與實驗架設 66
5-1 簡易封裝 66
5-2 量測與實驗架設 67
5-2.1 微電極陣列晶片阻抗量測 67
5-2.2 神經電信號實驗架設與量測 68
5-3 三維微電極陣列晶片整合前級放大器 69
第六章 結論與未來工作 78
第七章 參考文獻 80
圖目錄
圖1-1 動作電位示意圖 15
圖1-2 神經電信號產生與傳導示意圖 15
圖1-3 將動作電位視為數位信號編碼示意圖 16
圖1-4 德國Multi Channel Systems發展的平面維電極陣列 16
圖1-5 具穿刺能力之平面微電極陣列 17
圖1-6 瑞士Ayanda Biosystems發展三維微電極陣列SEM圖 17
圖1-7 美國Bionic Technology發展三維微電極陣列SEM圖 18
圖1-8 三步驟的乾式深蝕刻所製作之三維微電極陣列 18
圖1-9 電鍍製作之三維微電極陣列 19
圖1-10 熱擴散、晶元切割及等向性蝕刻製作之三維微電極陣列19
圖1-11 非等向性蝕刻、厚膜光阻、剝離技術製作之三維微電極20
圖1-12 磁自組裝之三維微電極陣列 20
圖1-13 微組裝技術配合表面微細加工製程製作之三維微電極陣列21
圖2-1 三維微電極設計考量 26
圖2-2 三維微電極元件示意圖 26
圖2-3 從晶片背面將傳導線拉出之微電極示意圖 27
圖3-1 四種微電極針頭蝕刻測試步驟 35
圖3-2 XeF2蝕刻形狀過程圖 36
圖3-3 平頂圓弧錐狀微結構 (XeF2) 37
圖3-4 圓弧錐狀微結構,左上角為俯視圖 (XeF2) 37
圖3-5 四面圓弧錐狀微結構,左上角為俯視圖 (XeF2) 38
圖3-6 以XeF2製作結構針尖部分 (XeF2) 38
圖3-7 圓弧錐狀底座+粗柱狀結構 (ICP+XeF2) 39
圖3-8 圓弧錐狀底座+細柱狀結構 (ICP+XeF2) 39
圖3-9 以ACES蝕刻模擬軟體模擬TMAH蝕刻結果 40
圖3-10 角椎狀微結構近照 ( TMAH ) 40
圖3-11 以TMAH製作結構針尖部分 (TMAH) 41
圖3-12 角椎狀底座+不規則結構 (ICP+TMAH) 41
圖3-13 角椎狀微結構 (ICP+TMAH) 42
圖4-1 三維微電極陣列製程流程圖 51
圖4-1(續) 三維微電極陣列製程流程圖 52
圖4-2 光罩佈局 (a) 2 x 2微電極陣列 (b) 10 x 10微電極陣列53
圖4-3 經爐管氧化於微電極側壁、傳導線局部成長二氧化矽 54
圖4-4 去除氮化矽薄膜後之三維微電極陣列結構 54
圖4-4(續) 去除氮化矽薄膜後之三維微電極陣列結構 55
圖4-5 以XeF2矽等向性蝕刻製作之微針頭結構(未去環) 56
圖4-6 以XeF2矽等向性蝕刻製作之微針頭結構SEM圖 57
圖4-7 調整XeF2製程參數所製作微電極針頭SEM圖 58
圖4-8 先以ICP製程蝕刻一深度,以利調整微針頭高度 59
圖4-9 以ICP製程調整微針頭高度,再以XeF2製作之微針頭 59
圖4-10 本文所製作之三維微電極陣列SEM全圖 60
圖4-11 三維微電極陣列晶片 61
圖4-12 第一道ICP蝕刻出傳導線形狀及高度 61
圖4-13 兩道ICP製作傳導線及三維微電極結構 62
圖4-14 ICP底切現象造成的斜面 62
圖4-15 以TMAH非等向性濕式蝕刻製作微針尖SEM圖 63
圖4-16 以XeF2等向性蝕刻因負載效應過蝕所造成二氧化矽空筒64
圖4-17 浸泡稀釋HF溶液去除微針頭結構旁環狀二氧化矽過程 因外力造成薄膜破裂現象 65
圖5-1 視網膜組織剖面示意圖 71
圖5-2 三維微電極封裝結構及量測示意圖 71
圖5-3 以打線機將金線連接晶片及印刷電路版 72
圖5-4 使用缺氧膠封住金線以提供防水、絕緣及保護作用 72
圖5-5 將漆包線以焊錫連接印刷電路版 73
圖5-6 使用環氧樹酯將接點封住以提供防水、絕緣及保護作用 73
圖5-7 微電極阻抗量測實驗架設示意圖 74
圖5-8 微電極阻抗量測實驗架設圖 74
圖5-9 量測實驗儀器架設簡圖 75
圖5-10 傳統玻璃微電極 75
圖5-11 胞外記錄實驗架設圖 76
圖5-12 三維微電極與前級放大器電路配置示意圖 76
圖5-13 2 × 2三維微電極陣列整合前級放大器製程光罩圖 77
圖5-14 4 × 4三維微電極陣列整合前級放大器製程光罩圖 77
表目錄
表3-1 XeF2與TMAH蝕刻溶液特性 33
表3-2 微電極針頭測試製程方式與微針頭形狀、大小整理 34

[1] T. Ichiki, T. Hara, T. Ujiie, Y. Horiike, and K. Yasuda ,” Development of bio-MEMS devices for single cell expression analysis,” Conference of Microprocesses and Nanotechnology, Shimane , Japan, Oct., 2001, pp 190 -191.
[2] O. Bruckman, G. Jullien, M. Ahmadi, and W. Miller, ” A MEMS DNA replicator and sample manipulator,” Proceedings of Circuits and Systems, Lansing, MI, Aug., 2000, pp 232—235.
[3] K. Ikuta, S. Maruo, Y. Fukaya, and T. Fujisawa, ” Biochemical IC chip toward cell free DNA protein synthesis,” The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, Heidelberg , Germany, Jan., 1998, pp 131—136.
[4] Z. Zhan, C. Dafu, Y. Zhongyao, and W. Li, ” Biochip for PCR amplification in silicon,” Conferences of Microtechnologies in Medicine and Biology, Lyon , France, Oct., 2000, pp 25-28.
[5] T. Kikuchi, T. Ujiie, T. Ichiki, and Y. Horiike, ” Fabrication of quartz micro-capillary electrophoresis chips for health care devices,” Conferences of Microprocesses and Nanotechnology, Yokohama , Japan, July, 2001, pp 178-179.
[6] M. Meister, L. Lagnado, and D. A. Baylor,” Concerted signaling by retinal ganglion cells,” Science, 270, pp 1207-1210, 1995.
[7] I. H. Brivanlou, D. K. Warland, and M. Meister, ” Mechanisms of concerted firing among retinal ganglion cells,” Neuron, 20, pp 527-539, 1998.
[8] S. H. DeVries,“Correlated firing in rabbit retinal ganglion cells,” Journal of Neurophysiol, 81, pp 908-920, 1999.
[9] M. Shikida, M. Odagaki, N. Todoroki, M. Ando, Y. lshihara, T. Ando, and K. Sato,” Non-photolithographic pattern transfer for fabricating arrayed 3-D microstructures by chemical anisotropic etching,” IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, Jan., 2003,.pp 562 —565.
[10] P. Griss, and G. Stemme,” Novel, side opened out-of-plane microneedles for microfluidic transdermal interfacing,” The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, Jan., 2002,.pp 467 —470.
[11] S. Chandrasekaran, and A.B. Frazier,” Characterization of surface micromachined hollow metallic microneedles,” IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, Jan., 2003,.pp 363 —366
[12] U. Egert, B. Schlosshauer, S. Fennrich, W. Nisch, M. Fejtl, T. Knott, T. Muller, and H. Hammerle, “A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays,” Brain research protocols, 2, pp 229-242, 1998.
[13] Multichannel systems, http://www.multichannelsystems.com/
[14] N.A. Blum, B.G. Carkhuff, H.K. Charles, R.L. Edwards, and R.A. Meyer,” Multisite microprobes for neural recordings,” IEEE Transactions on Biomedical Engineering, 38, pp 68-74, 1991.
[15] J. Ji, and K.D.Wise,” An implantable CMOS circuit interface for multiplexed microelectrode recording arrays,” IEEE Journal of Solid-State Circuits, 27, pp 433-443, 1992
[16] G. Ensell, D.J. Banks, D.J. Ewins, W. Balachandran, and P.R. Richards,” Silicon-based microelectrodes for neurophysiology fabricated using a gold metallization/nitride passivation system,” Journal of Microelectromechanical Systems, 5, pp 117-121, 1996.
[17] C. Xu, W. Lemon, and C. Liu,” Design and fabrication of a high-density metal microelectrode array for neural recording,” Sensors and Actuators A, 96, pp 78—85, 2002.
[18] M. O, Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, and P. Renaud , “A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices,” Journal of Neuroscience Methods, 114, pp 135 - 148 .2002.
[19] Ayanda Biosystems, http://www.ayanda-biosys.com/lts.html
[20] BIONIC Technology, http://www.bionictech.com/index.html
[21] P. Griss, P. Enoksson, H. K. Tolvanen-Laakso, P. Merilainen, S. Ollmar, and G Stemme, “Micromachined Electrodes for Biopotential Measurements,” Journal Of Microelectromechanical System, 10, pp 10-16, 2001.
[22] A. Hung, D. Zhou, R. Greenberg, and J. W. Judy, “Micromachined Electrodes for Retinal Prostheses,” IEEE-EMBS Special Topic Conference On Microtechnologies In The Medicine & Biology, Madison, Wisconsin, May, 2002, pp 76-79.
[23] A. Hung, D. Zhou, R. Greenberg, and J. W. Judy, “Micromachined electrodes for high density neural stimulation systems,” MEMS’02, Las Vegas, Nevada, Jan, 2002, pp 56-59.
[24] J.A. Bielen, W.L.C. Rutten, A.W. Schmidt, and R. Weiel, “Fabrication of multi electrode array structures for intra-neural stimulation: assessment of the LIGA method,” Engineering in Medicine and Biology Society, Amsterdam, Netherlands, Oct, 1996, pp 268-269.
[25] P. K. Campbell, K. E. Jones, R. J. Huber, K. W. Horch, and R. A. Normann, “A Silicon-Based, Three-Dimensional Neural Interface: Manufacturing Processes for an Intracortical Electrode Array,” IEEE Transactions On Biomedical Engineering, 38, pp 758-768, 1991.
[26] K. E. Jones, P. K. Compbell, and R. A. Normann, “Interelectrode Isolation in a Penetrating Intracortical Electrode Array,” IEEE Engineering in Medicine and Biology Society, Nov, 1990, pp 496-497.
[27] R. A. Normann, E. M. Maynard, P. J. Rousche, and D. J. Warren, “A neural interface for a cortical vision eprosthesis ,” Vision Research, 39, pp 2577-2587, 1999.
[28] R. A. Normann, P. K. Campbell, and K. E. Jones, ”A Silicon Based Electrode Array for Intracortical Stimulation: Structural and Electrical Properties ,” IEEE Engineering in medicine & biology society, Nov, 1989, pp 939-940.
[29] J.A. Bielen, T.A. Frieswijk, and W.L.C. Rutten , “Development of a solder bump technique for contacting a three-dimensional multi electrode array,” Engineering in Medicine and Biology Society, Montreal, Canada, Sep, 1995, pp 1101-1102.
[30] P. Thiebaud, C. Beuret, N.F. de Rooij, and M. Koudelka-Hep, “Microfabrication of Pt-tip microelectrodes,” Sensors and Actuators B, 70, pp 51-56, 2000.
[31] P. Thiebaud, C. Beuret, M. Koudelka-Hep, M. Bove, S. Martinoia, M. Grattarola, H. Jahnsen, R. Rebaudo, M. Balestrino, J. Zimmer, and Y. Dupont, “An array of Pt-tip microelectrodes for extracellular monitoring of activity of brain slices,” Biosensors & Bioelectronics, 14, pp 61-65, 1999.
[32] S. Takeuchi, T. Suzuki, K. Mabuchi, and H. Fujita,” 3D flexible multichannel probe array,” IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, Jan., 2003,.pp 376 —370.
[33] T. Suzuki, K. Mabuchi, and S. Takeuchi, “A 3D flexible parylene probe array for multichannel neural recording,” First International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, March, 2003, pp 154-156.
[34] Q. Bai, K.D. Wise, and D. J. Anderson, “A High-Yield Microassembly Structure For Three-Dimensional Microelectrode Arrays,” IEEE Transactions On Biomedical Engineering, 47, pp 281-289, 2000.
[35] Q. Bai, and K. D. Wise, “Single-Unit Neural Recording with Active Microelectrode Arrays,” IEEE Transactions On Biomedical Engineering, 48, pp 911-920, 2001.
[36] A. C. Hoogerwerf, and K. D. Wise, “A Three-Dimensional Microelectrode Array for Chronic Neural Recording,” IEEE Transactions On Biomedical Engineering, 41, pp 1136-1146, 1994.
[37] C. G. J. Schabmueller, Y. Hanein, G. Holman, K. F. Bohringer,” High-Aspect Ratio Submicrometer Needles for Intracellular Applications,” Micromechanics Europe Workshop (MME '02), Sinaina, Romania, October 6-8, 2002.
[38] Y. Hanein, U. Lang, J. Theobald, R. Wyeth, T. Daniel, D. D. Denton, A. O. Willows, and K. F. Böhringer,” Intracellular Recording with High Aspect Ratio MEMS Neuronal Probes,” Transducers'01 - The 11th International Conference on Solid-State Sensors and Actuators, Munich, Germany, June, 2001, pp 386-389.
[39] K.F. Bohringer, D.D. Denton, Y. Hanein, G. Holman, A.O.D. Willows, and R.C. Wyeth,” Silicon micro-needles with flexible interconnections,” IEEE-EMB Special Topic Conference on Microtechnologies in Medicine & Biology, Madison, WI, May, 2001,pp 255-260.
[40] D.J. Anderson, K. Najafi, S.J. Tanghe, D.A. Evans, K.L. Levy, J.F.Hetke, X. Xue, J.J. Zappia, and K.D. Wise,” Batch fabricated thin-filmelectrodes for stimulation of the central auditory system,“ IEEE Transactions on Biomedical Engineering, 36, pp 693 —704, 1989.
[41] P.J. Rousche, D.S. Pellinen, D.P. Jr. Pivin, J.C. Williams, R.J. Vetter, and D.R. Kirke,” Flexible polyimide-based intracortical electrode arrays with bioactive capability,” IEEE-Transactions-on-Biomedical- Engineering, 48, pp 361—371, 2001.
[42] N.A. Blum, B.G. Carkhuff, H.K. Jr. Charles, R.L. Edwards, and R.A. Meyer, “ Multisite microprobes for neural recordings,” IEEE Transactionson Biomedical Engineering, 38, pp 68—74, 1991.
[43] J.J. Mastrototaro, H.Z. Massoud, T.C. Pilkington and R.E. Ideker,” Rigid and flexible thin-film multielectrode arrays for transmural cardiac recording,” IEEE Transactions on Biomedical Engineering, 39, pp 271—279, 1992.
[44] L. Wang, A. Nichelatti, H. Schellevis, C. de Boer, C. Visser, T.N. Nguyen, and P.M. Sarro,” High aspect ratio through-wafer interconnections for 3D-microsystems,” IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, Jan., 2003,.pp 634 —637.
[45] S. Yamamoto, K. Itoi, T. Suemasu, and T. Takizawa,” Si through-hole interconnections filled with Au-Sn solder by molten metal suction method,” IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, Jan., 2003,.pp 642 —645.
[46] National Semiconductor, http://www.national.com/pf/LM/LMC660.html

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔