|
[1] T. Ichiki, T. Hara, T. Ujiie, Y. Horiike, and K. Yasuda ,” Development of bio-MEMS devices for single cell expression analysis,” Conference of Microprocesses and Nanotechnology, Shimane , Japan, Oct., 2001, pp 190 -191. [2] O. Bruckman, G. Jullien, M. Ahmadi, and W. Miller, ” A MEMS DNA replicator and sample manipulator,” Proceedings of Circuits and Systems, Lansing, MI, Aug., 2000, pp 232—235. [3] K. Ikuta, S. Maruo, Y. Fukaya, and T. Fujisawa, ” Biochemical IC chip toward cell free DNA protein synthesis,” The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, Heidelberg , Germany, Jan., 1998, pp 131—136. [4] Z. Zhan, C. Dafu, Y. Zhongyao, and W. Li, ” Biochip for PCR amplification in silicon,” Conferences of Microtechnologies in Medicine and Biology, Lyon , France, Oct., 2000, pp 25-28. [5] T. Kikuchi, T. Ujiie, T. Ichiki, and Y. Horiike, ” Fabrication of quartz micro-capillary electrophoresis chips for health care devices,” Conferences of Microprocesses and Nanotechnology, Yokohama , Japan, July, 2001, pp 178-179. [6] M. Meister, L. Lagnado, and D. A. Baylor,” Concerted signaling by retinal ganglion cells,” Science, 270, pp 1207-1210, 1995. [7] I. H. Brivanlou, D. K. Warland, and M. Meister, ” Mechanisms of concerted firing among retinal ganglion cells,” Neuron, 20, pp 527-539, 1998. [8] S. H. DeVries,“Correlated firing in rabbit retinal ganglion cells,” Journal of Neurophysiol, 81, pp 908-920, 1999. [9] M. Shikida, M. Odagaki, N. Todoroki, M. Ando, Y. lshihara, T. Ando, and K. Sato,” Non-photolithographic pattern transfer for fabricating arrayed 3-D microstructures by chemical anisotropic etching,” IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, Jan., 2003,.pp 562 —565. [10] P. Griss, and G. Stemme,” Novel, side opened out-of-plane microneedles for microfluidic transdermal interfacing,” The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, Jan., 2002,.pp 467 —470. [11] S. Chandrasekaran, and A.B. Frazier,” Characterization of surface micromachined hollow metallic microneedles,” IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, Jan., 2003,.pp 363 —366 [12] U. Egert, B. Schlosshauer, S. Fennrich, W. Nisch, M. Fejtl, T. Knott, T. Muller, and H. Hammerle, “A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays,” Brain research protocols, 2, pp 229-242, 1998. [13] Multichannel systems, http://www.multichannelsystems.com/ [14] N.A. Blum, B.G. Carkhuff, H.K. Charles, R.L. Edwards, and R.A. Meyer,” Multisite microprobes for neural recordings,” IEEE Transactions on Biomedical Engineering, 38, pp 68-74, 1991. [15] J. Ji, and K.D.Wise,” An implantable CMOS circuit interface for multiplexed microelectrode recording arrays,” IEEE Journal of Solid-State Circuits, 27, pp 433-443, 1992 [16] G. Ensell, D.J. Banks, D.J. Ewins, W. Balachandran, and P.R. Richards,” Silicon-based microelectrodes for neurophysiology fabricated using a gold metallization/nitride passivation system,” Journal of Microelectromechanical Systems, 5, pp 117-121, 1996. [17] C. Xu, W. Lemon, and C. Liu,” Design and fabrication of a high-density metal microelectrode array for neural recording,” Sensors and Actuators A, 96, pp 78—85, 2002. [18] M. O, Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, and P. Renaud , “A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices,” Journal of Neuroscience Methods, 114, pp 135 - 148 .2002. [19] Ayanda Biosystems, http://www.ayanda-biosys.com/lts.html [20] BIONIC Technology, http://www.bionictech.com/index.html [21] P. Griss, P. Enoksson, H. K. Tolvanen-Laakso, P. Merilainen, S. Ollmar, and G Stemme, “Micromachined Electrodes for Biopotential Measurements,” Journal Of Microelectromechanical System, 10, pp 10-16, 2001. [22] A. Hung, D. Zhou, R. Greenberg, and J. W. Judy, “Micromachined Electrodes for Retinal Prostheses,” IEEE-EMBS Special Topic Conference On Microtechnologies In The Medicine & Biology, Madison, Wisconsin, May, 2002, pp 76-79. [23] A. Hung, D. Zhou, R. Greenberg, and J. W. Judy, “Micromachined electrodes for high density neural stimulation systems,” MEMS’02, Las Vegas, Nevada, Jan, 2002, pp 56-59. [24] J.A. Bielen, W.L.C. Rutten, A.W. Schmidt, and R. Weiel, “Fabrication of multi electrode array structures for intra-neural stimulation: assessment of the LIGA method,” Engineering in Medicine and Biology Society, Amsterdam, Netherlands, Oct, 1996, pp 268-269. [25] P. K. Campbell, K. E. Jones, R. J. Huber, K. W. Horch, and R. A. Normann, “A Silicon-Based, Three-Dimensional Neural Interface: Manufacturing Processes for an Intracortical Electrode Array,” IEEE Transactions On Biomedical Engineering, 38, pp 758-768, 1991. [26] K. E. Jones, P. K. Compbell, and R. A. Normann, “Interelectrode Isolation in a Penetrating Intracortical Electrode Array,” IEEE Engineering in Medicine and Biology Society, Nov, 1990, pp 496-497. [27] R. A. Normann, E. M. Maynard, P. J. Rousche, and D. J. Warren, “A neural interface for a cortical vision eprosthesis ,” Vision Research, 39, pp 2577-2587, 1999. [28] R. A. Normann, P. K. Campbell, and K. E. Jones, ”A Silicon Based Electrode Array for Intracortical Stimulation: Structural and Electrical Properties ,” IEEE Engineering in medicine & biology society, Nov, 1989, pp 939-940. [29] J.A. Bielen, T.A. Frieswijk, and W.L.C. Rutten , “Development of a solder bump technique for contacting a three-dimensional multi electrode array,” Engineering in Medicine and Biology Society, Montreal, Canada, Sep, 1995, pp 1101-1102. [30] P. Thiebaud, C. Beuret, N.F. de Rooij, and M. Koudelka-Hep, “Microfabrication of Pt-tip microelectrodes,” Sensors and Actuators B, 70, pp 51-56, 2000. [31] P. Thiebaud, C. Beuret, M. Koudelka-Hep, M. Bove, S. Martinoia, M. Grattarola, H. Jahnsen, R. Rebaudo, M. Balestrino, J. Zimmer, and Y. Dupont, “An array of Pt-tip microelectrodes for extracellular monitoring of activity of brain slices,” Biosensors & Bioelectronics, 14, pp 61-65, 1999. [32] S. Takeuchi, T. Suzuki, K. Mabuchi, and H. Fujita,” 3D flexible multichannel probe array,” IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, Jan., 2003,.pp 376 —370. [33] T. Suzuki, K. Mabuchi, and S. Takeuchi, “A 3D flexible parylene probe array for multichannel neural recording,” First International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, March, 2003, pp 154-156. [34] Q. Bai, K.D. Wise, and D. J. Anderson, “A High-Yield Microassembly Structure For Three-Dimensional Microelectrode Arrays,” IEEE Transactions On Biomedical Engineering, 47, pp 281-289, 2000. [35] Q. Bai, and K. D. Wise, “Single-Unit Neural Recording with Active Microelectrode Arrays,” IEEE Transactions On Biomedical Engineering, 48, pp 911-920, 2001. [36] A. C. Hoogerwerf, and K. D. Wise, “A Three-Dimensional Microelectrode Array for Chronic Neural Recording,” IEEE Transactions On Biomedical Engineering, 41, pp 1136-1146, 1994. [37] C. G. J. Schabmueller, Y. Hanein, G. Holman, K. F. Bohringer,” High-Aspect Ratio Submicrometer Needles for Intracellular Applications,” Micromechanics Europe Workshop (MME '02), Sinaina, Romania, October 6-8, 2002. [38] Y. Hanein, U. Lang, J. Theobald, R. Wyeth, T. Daniel, D. D. Denton, A. O. Willows, and K. F. Böhringer,” Intracellular Recording with High Aspect Ratio MEMS Neuronal Probes,” Transducers'01 - The 11th International Conference on Solid-State Sensors and Actuators, Munich, Germany, June, 2001, pp 386-389. [39] K.F. Bohringer, D.D. Denton, Y. Hanein, G. Holman, A.O.D. Willows, and R.C. Wyeth,” Silicon micro-needles with flexible interconnections,” IEEE-EMB Special Topic Conference on Microtechnologies in Medicine & Biology, Madison, WI, May, 2001,pp 255-260. [40] D.J. Anderson, K. Najafi, S.J. Tanghe, D.A. Evans, K.L. Levy, J.F.Hetke, X. Xue, J.J. Zappia, and K.D. Wise,” Batch fabricated thin-filmelectrodes for stimulation of the central auditory system,“ IEEE Transactions on Biomedical Engineering, 36, pp 693 —704, 1989. [41] P.J. Rousche, D.S. Pellinen, D.P. Jr. Pivin, J.C. Williams, R.J. Vetter, and D.R. Kirke,” Flexible polyimide-based intracortical electrode arrays with bioactive capability,” IEEE-Transactions-on-Biomedical- Engineering, 48, pp 361—371, 2001. [42] N.A. Blum, B.G. Carkhuff, H.K. Jr. Charles, R.L. Edwards, and R.A. Meyer, “ Multisite microprobes for neural recordings,” IEEE Transactionson Biomedical Engineering, 38, pp 68—74, 1991. [43] J.J. Mastrototaro, H.Z. Massoud, T.C. Pilkington and R.E. Ideker,” Rigid and flexible thin-film multielectrode arrays for transmural cardiac recording,” IEEE Transactions on Biomedical Engineering, 39, pp 271—279, 1992. [44] L. Wang, A. Nichelatti, H. Schellevis, C. de Boer, C. Visser, T.N. Nguyen, and P.M. Sarro,” High aspect ratio through-wafer interconnections for 3D-microsystems,” IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, Jan., 2003,.pp 634 —637. [45] S. Yamamoto, K. Itoi, T. Suemasu, and T. Takizawa,” Si through-hole interconnections filled with Au-Sn solder by molten metal suction method,” IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, Jan., 2003,.pp 642 —645. [46] National Semiconductor, http://www.national.com/pf/LM/LMC660.html
|