跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 05:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉興治
論文名稱:以發泡式基板為應力緩衝層之晶圓級封裝之三維結構設計與可靠度分析
論文名稱(外文):3D Structure Design and Reliability Analysis of Wafer Level Package with Bubble-Like Stress Buffer Layer
指導教授:江國寧
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:101
中文關鍵詞:晶圓級封裝發泡式應力緩衝層
相關次數:
  • 被引用被引用:1
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨電子產品輕薄短小及功能多樣化之潮流,傳統之電子封裝型態已無法符合新世代產品於體積或功能之要求,故發展不同型態之封裝體已呈必然之趨勢。而目前封裝設計者主要以晶圓級封裝(Wafer Level Package;WLP)及晶片尺寸級封裝(Chip Scale Package;CSP)技術為基礎,以發展出新式之封裝技術,達到封裝體性能及可靠度之要求。
而本論文亦提出一新式之晶圓/晶片尺寸級封裝體(WL-CSP),利用位於晶片與印刷電路板間之應力緩衝層及發泡式基板,提高晶片與印刷電路板之間距,以舒緩晶片與印刷電路板間不匹配之熱膨脹量。此一構想可將晶片與印刷電路板間不匹配之熱膨脹量,平均分佈至更大的區域以提高銲錫接點之壽命,如此將可有效解決具有較大晶片尺寸之晶圓級封裝體可靠度不佳的問題。
而為清楚瞭解所提出之新式封裝結構可靠度與發泡基板及應力緩衝層之關係,本論文利用有限元素分析軟體ANSYSâ與三維有限元素模型,對此新式封裝結構之重要參數如:應力緩衝層厚度、不同型態發泡基板之厚度、彎曲角度及高度進行模擬與分析,並深入探討其結構參數與封裝體可靠度之關係。
而分析結果指出此新式封裝體之發泡基板及應力緩衝層結構,的確可舒緩錫球所承受之熱應力,進而達到提高錫球熱疲勞壽命之目的。然根據ANSYSâ之模擬結果可發現各項結構參數與錫球之熱疲勞壽命,實具有不同程度之關係及趨勢。此外本論文亦探討發泡式基板與應力緩衝層間之剝離問題,以及銅導線架於熱循環負載所承受之應力。最後期許本論文研究之結果可作為日後相關封裝結構設計參考之依據。

With the trend of multi-function and minimizing volume, original electronic package type has not met the performance of new-generation product. Consequently, new type packages based on WLP and CSP skills are developed to achieve the demand of reliability.
New WL-CSP with stress buffer layer and bubble-like plate are proposed to improve the solder joint fatigue life. Therefore the thermal stress caused by CTE mismatch could be reduce. Finally, the reliability of the WLP with larger die size could be enhanced by this new design.
In order to realize the relationship of the solder joint fatigue life, stress buffer layer and bubble-like plate, a finite element parametric analysis applying software ANSYSâ is utilized. The design parameters include the thickness of stress buffer layer, thickness, bending angle and height of different type bubble-like plate.
It could be found in the FEM analysis results that the stress buffer layer and bubble-like plate can not only relax the thermal stress of solder joints but also achieve the goal of enhancing package reliability. However, the relationship between each parameter and solder joint fatigue life has a dissimilar trend. Finally, the peeling stress between stress buffer layer as well as two different type bubble-like plate is discussed and the stress state of leadframe is also analyzed in the research.

目 錄
頁次
第一章 緒論 …………………………………………………… 1
1.1電子封裝簡介………………………………………………… 1
1.1.1晶圓/晶片尺寸級封裝(WL-CSP)……………………. 1
1.1.2電子封裝可靠度與加速度測試………………………. 4
1.1.2.1電子封裝可靠度測試……………………………. 5
1.1.2.2加速度測試………………………………………. 6
1.2研究動機……………………………….…………………….. 7
1.3文獻回顧…………………………………….……………….. 8
1.4研究目標…………………………….……………………….. 12
第二章 理論基礎……………………………………………….. 13
2.1錫球幾何外型預測…………………………………………… 13
2.1.1力平衡觀念之解析法……………………………………. 13
2.1.2能量法(Energy-Based Method)………………………. 17
2.2非線性理論…………………………………………………… 20
2.2.1 Newton-Raphson法……………………………………… 21
2.2.2降伏準則(Yield Criterion)…………………………. 23
2.2.3硬化準則(Hardening Rule)…………………….…….. 25
2.3可靠度估算準則(Reliability Criterion)……………… 26
第三章 研究方法…………………………………………….. 29
3.1實驗之驗證(128 MB DRAM之加速熱循環試驗結果).….. 29
3.1.1有限元素模型之建立……………………………………. 30
3.1.2模擬結果與實驗之驗證………………………………….. 31
3.2發泡式基板封裝體有限元素模型之建立……………….… 33
3.2.1有限元素模型之幾何尺寸及邊界條件的設定…………. 34
3.2.2有限元素模型之材料參數設定…………………………. 35
3.2.3有限元素模型之負載…………………………………… 36
3.3有限元素模型之參數化分析………………………………… 36
3.3.1基準有限元素模型………………………………………. 37
3.3.1.1中空圓柱式發泡基板之基準有限元素模型……….. 37
3.3.1.2浪板式發泡基板之基準有限元素模型……………... 38
3.3.2 幾何參數化分析之有限元素模型……………………… 38
3.3.2.1發泡基板彎曲角度參數化之有限元素模型……….. 38
3.3.2.2發泡基板彎曲高度參數化之有限單元模型……….. 39
3.3.2.3發泡基板厚度參數化之有限單元模型……….……. 39
3.3.2.4應力緩衝層厚度之參數化有限元素模型………….. 40
第四章 分析結果與討論…………………….…………………. 41
4.1參數化分析之銲錫接點加速熱循環試驗模擬結果………… 41
4.1.1基準有限元素模型之模擬結果…………………………. 41
4.1.1.1中空圓柱式發泡基板之模擬結果………………….. 41
4.1.1.2浪板式發泡基板之模擬結果………………………... 43
4.1.1.3兩發泡式基板之結構勁度比較……………………... 43
4.1.2有限元素模型之幾何參數化分析模擬結果……………. 44
4.1.2.1發泡基板彎曲角度之參數化模型模擬結果………... 44
4.1.2.2發泡基板彎曲高度之參數化模型模擬結果……….. 46
4.1.2.3發泡基板厚度之參數化模型模擬結果…………….. 47
4.1.2.4應力緩衝層厚之度參數化模型模擬結果…………... 48
4.1.3參數化分析之綜合比較………………………………….. 49
4.2發泡基板與應力緩衝層間之剝離應力………………………. 50
4.3銅導線架及晶片之應力狀態…………………………………. 52
第五章 結論與未來展望……….………………………………. 54
參考文獻 ………………………………………………………… 57
圖表……….………………………………………………………. 63

參考文獻
1.J. Fjelstad, “W.A.V.E.TM Technology for Wafer Level Packaging of ICs,” IEEE/CPMT Electronics Packaging Technology Conference, pp.214-218, 1998.
2.R. R. Tummala, “Fundamental of Microsystems Packaging,” McGraw-Hill, N. Y., pp. 335-336, 2001.
3.J. H. Lau, “Critical Issues of Wafer Level Chip Scale Package(WLCSP) with Emphasis on Cost Analysis and Solder Joint Reliability,” IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, pp. 33-46, 2000.
4.M. Topper, S. Fehlberg, K. Scherpinski, C. Karduck, V. Glaw, K. Heinricht, P. Coskina, O. Ehrmann, and Herbert Reichl, “Wafer-Level Chip Size Package (WL-CSP),” IEEE Transactions on Advanced Packaging, Vol. 23, NO. 2, pp. 233-238, 2000.
5.F. Y. Xu, R. Bymark and B. L. Hsu, “A Novel Epoxy Encapsulant for CSP(μBGA)-New Hydrophobic Epoxy Elastomer,” International Symposium on Advanced Packaging Materials, pp. 83-89, 2000.
6.V. Solberg, D. Light and J. Fjelstad, “Reliable and Low Cost Wafer Level Packaging,” IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, pp. 108-114, 2000.
7.P. Elenius, “The Ultra CSP Wafer Level Package,” IEEE/CPMT Electronics Packaging Technology Conference, pp. 83-88, 1998.
8.T. Kawahara, “SuperCSP TM,” IEEE Transactions on Advanced Packaging, Vol. 23, NO. 2, pp. 215-219, 2000.
9.A. Kazama, T. Satoh, Y. Yamaguchi, I. Anjoh and A. Nishimura, “Development of Low-cost and Highly Reliable Wafer Package,” Electronic Components and Technology Conference, pp. 40-46, 2001.
10.I. S. Kang, J. H. Kim, I. S. Park, K. R. Hur and S. J. Cho, “The Solder Joint and Runner Metal Reliability of Wafer-Level CSP(Omega-CSP),” Electronic Components and Technology Conference, pp. 87-92, 2000.
11.J. Y. Kim, I. S. Kang, M. G. Park, J. H. Kim, S. J. Cho, I. S. Park and H. S. Chun, “Characterization of Wafer Level Package for Mobile Phone Application,” Electronic Components and Technology Conference, pp. 1398-1401, 2001.
12.M. Topper, V. Glaw, P. Coskina, J. Auersperg, K. Samulewicz, M. Lange, C. Karduck, S. Fehlberg, O. Ehmann and H. Reichl, “Wafer Level Package using Double Balls,” International Symposium on Advanced Packaging Materials, pp. 198-200, 2000.
13.R. R. Tummala, “Fundamental of Microsystems Packaging,” McGraw-Hill, N. Y., pp. 886-888, 2001.
14.C. K. Yeo, S. Mhaisalkar and H. L. J. Pang, “Solder Joint Reliability Study of 256 Pin, 0.4 mm pitch, PQFP,” Electronic Components and Technology Conference, pp.1222-1231, 1996.
15.A. Badihi, “Ultrathin Wafer Level Chip Size Package,” IEEE Transactions on Advantaged Packaging, Vol. 23, NO. 2, pp.212-214, 2000.
16.K. N. Chiang, "Wafer Level Packaging Using Bubble-Like Flex Substrate," Taiwan Patent 473,960, 2002.
17.C. C. Lee, “Design and Reliability Analysis of Wafer Level Package with Bubble-Like Buffer Layer,” National Tsing Hua University Power Mechanical Engineering Master Thesis, 2001.
18.P. Garrou, “Wafer Level Chip Scale Packaging(WL-CSP):An Overview,” IEEE Transactions on Advantaged Packaging, Vol. 23, NO. 2, pp.198-205, 2000.
19.S. J. Ham and S. B. Lee, “Measurement of Thermo-mechanical Deformation of Wafer-Level CSP Assembly Under Thermal Cycling Condition,” Int’l Symposium on Electronics Materials and Packaging, pp. 323-327, 2001.
20.D. H. Kim and P. Elenius, “Deformation and Crake Growth Characteristics of SnAgCu vs 63Sn/37Pb Solder Joints on WLP in Thermal Cycle Testing,” Electronic Components and Technology Conference, pp. 681-686, 2001.
21.Q. Yu, M. Shiratori and Y. Ohshima, “A Study of the Effects of BGA Solder Geometry on Fatique Life and Reliability Assessment,” InterSociety Conference on Thermal Phenomena, pp. 229-235, 1998.
22.H. C. Cheng, K. N. Chiang and C. K. Chen, “Parameteric Analysis of Thermally Enhanced BGA Reliability Using a Finite-Volume-Weighted Averaging Technique,” ASME International Mechanical Engineering Congress and Exposition, pp.13-20, 1998.
23.K. N. Chiang, Y. T. Lin and H. C. Cheng, “On Enhancing Eutectic Solder Joint Reliability Using a Second-Reflow-Process Approach,” IEEE Transactions on Advanced Packaging, Vol. 23, No. 1, pp. 9-14, 2000.
24.A. Schubert, R. Dudek and B. Michel, “Experimental and numerical Analyses of Flip-Chip Attach Reliability,” Symposium on Electronics Materials and Packaging, pp. 107-114, 2000.
25.L. L. Mercado, V. Sarihan, Y. Guo and A. Mawer, “Impact of Solder Pad Size on Solder Joint Reliability in Flip Chip PBGA Packages,” IEEE Transactions on Advanced Packaging, Vol. 23, No. 3, pp. 415-420, 2000.
26.H. Yang, P. Elenius, S. Barrett, C. Schneider, J. Leal, R. Moraca, R. Moody, Y. D. Kweon, D. H. Kim, D. Patterson, T. Goodman, “Reliability Characterizaion in UltraCSP Package Development,” Electronic Components and Technology Conference, pp.1376-1383, 2000.
27.L. Zhang, S. S. Chee and A. Maheshwari, “Effect of Solder Ball Pad Design on Cavity Down BGA Solder Joint Reliability,” Electronic Components and Technology Conference, pp. 1001-1006, 2002.
28.Y. Li, A. Pannikkat, L. Anderson, T. Verma and B. Euzent, “Building Reliability Into Full-Array BGAs,” IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, pp. 146-152, 2000.
29.K. N. Chiang and C. M. Liu, “A Comparison of Thermal Stress/strain Behavior of Elliptical/Round Solder Pads,” ASME Journal of Electronic Packaging, Vol. 123, pp. 1-5, 2001.
30.J. H. L. Pang, K. H. Ang, X. Q. Shi and Z. P. Wang, “Mechanical Deflection System (MDS) Test and Methodology for PBGA Solder Joint Reliability,” IEEE Transactions on Advanced Packaging, Vol. 24, No. 4, pp. 507-514, 2001.
31.B. Rogers, D. Scheck and P. Garrou, “Single Mask Stress Buffer,” Iternational Symposium on Advanced Packaging Materials, pp. 15-18, 1997
32.Z. P. Wang, Y. M. Tan and K. M. Chua, “Board Level Reliability Assessment of Chip Scale Packages,” Microelectronics Reliability, Vol. 39, pp. 1351-1356, 1999.
33.P. H. Tsao, C. L. Chen, Y. J. Huang and C. Huang, “Effects of Assembly Methodology on Manufacturing Induced Stress in μBGA Packages,” IEEE Electronic Components and Technology Conference, pp. 653 —656, 1999.
34.I. Mohammed and Y. G. Kim, “Design Feature of Compliant Packages and Their Impact on Reliability,” ASME International Mechanical Engineering Congress and Exposition, IMECE/EPP-24705, pp. 1-10,2001
35.T. Kim, D. H. Lee, J. K. Lee, P. S. Ahn, B. U. Kang, H. S. Moon and C. H. Choi, “Thermo-Mechanical Behavior of Elastomer for CSP and Reliability,” ISIE, pp. 701-706, 2001.
36.H. A. Reed, M. S. Bakir, C. S. Patel, K. P. Martin, J. D. Meindl and P. A. Kohl, “Compliant Wafer Level Package (CWLP) with Embedded Air-gaps for Sea of Leads (SoL) Interconnections,” IEEE, pp. 151-153, 2001.
37.S. M. Heinrich, M. Schaefer, S. A. Schroeder and P. S. Lee, “Prediction of Solder Joint Geometries in Array-Type Interconnects,” ASME Journal of Electronic Packaging, Vol. 118, pp. 114-121, 1996.
38.K. A. Brakke, “Surface Evolver Manual, Version 2.01,” the Geometry Center, University of Minnesota, 1996.
39.L. Li and B. H. Yeung, “Wafer Level and Flip Chip Design Through Solder Prediction Models and Validation,” IEEE Transactions on Components and Packaging Technologies, VOL. 24, NO. 4, pp. 650-654, 2001.
40.B. H. Yeung and T. Y. T. Lee, “Evalution and Optimization of Package Processing, Design, and Reliability through Solder Joint Profile Preduction,” IEEE Electronic Components and Technology Conference, pp. 925-930, 2001.
41.K. N. Chiang and C. A. Yuan, “An Overview of Solder Bump Shape Prediction Algorithms with Validations,” IEEE Transactions on Advanced Packaging, Vol. 24, NO. 2, pp.158-162, 2001.
42.K. Wassink and R. J., “Soldering in Electronics,” 2nd ed., Electrochemical Publications Limited, pp. 36-42, 1989.
43.S. I. Grossman and W. R. Derrick, “Advanced Engineering Mathematics, ” Harper & Row, Publishers, Inc., pp. 645-653, 1988.
44.R. D. Cook, D. S. Malkus, and M. E. Plesha, “Concepts and Applications of Finite Element Analysis,” 3rd ed., pp. 504-505, Wiley, N.Y., 1989.
45.W. F. Chen and D. J. Han “Plasticity for Structural Engineers,” pp. 72-84, GAU LIH BOOK CO., LTD., 1995
46.Ansys User’s Manual ,Volume I ~IV , 000447 Upd0 Ansys Revision 5.2 , ©SAS IP , 1995.
47.J. A. Collins, “Failure of Materials in Mechanical Design,” 2nd ed., pp. 140-156, N. Y., 1993.
48.W. F. Chen and D. J. Han “Plasticity for Structural Engineers,” pp. 14-16, GAU LIH BOOK CO., LTD., 1995
49.J. A. Collins, “Failure of Materials in Mechanical Design,” 2nd ed., pp. 393- 411, Wiley, N. Y., 1993.
50.J. H. Lau, “Solder Joint Reliability of Flip Chip and Plastic Ball Grid Array Assemblies Under Thermal, Mechanical and Vibration Conditions,” IEEE Transactions on Components, Packaging and Manufacturing Technology-Part B, Vol. 19, NO. 4, pp. 728-735, 1996.
51.V. Gektin, A. Bar-Cohen and J. Ames, “Coffin—Manson Fatigue Model of Underfilled Flip-Chips,” IEEE Transactions on Components, Packaging and Manufacturing Technology-Part A, Vol. 20, NO. 3, pp. 317-326, 1997.
52.S. S. Manson, Experimental Mechanics, Vol. 5, No. 7, pp. 193-226, 1965
53.H. D. Solomon, “Fatique of 60/40 Solder,” IEEE Transactions on Component, Hybrids, and Manufacturing Technology, pp. 423-432, 1986
54.M. G. Pecht, R. Agarwal, P. McCluskey, T. Dishongh, S. Javadpour and R. Mahajan, “Electronic Packaging Materials and Their Properties, ” CRC Press LLC, pp. 15-48, N. Y., 1999.
55.W. B. Hampshire, “Electronic Material Handbook,” Materials Park, OH:ASM International., 1989.
56.J. H. Lau, “Solder Joint Reliability : Theory and Applications,” Van Nostrand Reinhold, 1991.
57.P. J. Adams, “Thermal Fatigue of Solder Joints in Micro-Electronic Devices,” Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology, 1986.
58.S. Rzepka, M. A. Korhonen, “The Effect of Underfill Delamination on the Reliability of Flip Modules,” Application of Fracture Mechanics in Electronic Packaging, Vol. 20, pp.73-83, 1997.
59.S. T. Chen et al., “Out-of Plane Thermal Expansion Coefficient of Biphenyldianhydride-Phenylenediamine Polyimide Film,” Journal of Electronic Material, Vol. 22, NO. 7, p.797, 1993.
60.M. Pecht et al., “Characterization of Polyimide Used in high Density Interconnects,” IEEE Transactions on Components, Packaging and Manufacturing Technology-Part B, Vol.17, NO.4, p.632, 1994.
61.H. L. J. Pang, Y. P. Wang, X. Q. Shi and Z. P. Wang, “Sensitivity Study of Temperature and Strain Rate Dependent Properties on Solder Joint Fatigue Life, ” IEEE/CMPT Electronic Packaging Technology Conference, pp. 184-189, 1998.
62.S. Wiese, S. Rzepka and E. Meusel, “Time-independent Plastic Behavior of Solders and its Effect on FEM Simulations for Electronics Packages, ”IEEE International Symposium on Advanced Packaging Materials, pp. 104-111, 2002.
63.JEDEC Solid State Technology Association, “Temperature Cycling,” JEDS22-A104-B, EIA & JEDEC, USA, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top