參考文獻
1. R. A. Rimmer, G. Koehler, D. Li, N. Hartman, N. Folwell, J. Hodgson, K. Ko and B. McCandless, “PEP-II RF Cavity Revisited,” Note of CBP Tech 197 LCC-0032, December 3, 1999.
2. T. T. Yang, M. C. Lin, Ch. Wang, L. H. Chang, S. S. Chang, W. K. Lau and C. C. Kuo, “On the Mechanical Design of a 1.5GHz Landau Cavity,” Proceedings of the 1997 Particle Accelerator Conference, pp. 3054-3056, 1997.
3. H. Padamsee, J. Knobloch and T. Hays, RF Superconductivity for Accelerators, Wiley & Sons, Inc.,, New York, 2000.
4. H. Padamsee, “The Science and Technology of Superconducting Cavity for Accelerators,” Superconducting Science Technology, Vol. 14, pp. 28-51, 2001.
5. 羅國輝、王兆恩、張隆海與林明泉, “同步輻射儲存環之低溫超導共振腔簡介,” 同步輻射研究中心簡訊, No. 46, pp. 14-19, 2000.
6. H. Vogel, M. Peinger, M. Pekeler, P. Von Stein, L. H. Chang, C. T. Chen, M. C. Lin, G.. H. Luo, R. Sah, Ch. Wang, S. Belomestnykh, J. Knobloch, H. Padamsee and J. Sears, “Superconducting Accelerator Modules for the Taiwan Light Source,” Proceedings of EPAC, pp. 711-713, 2000.
7. G. H. Luo, L. H. Chang, C. C. Kuo, M. C. Lin, R. Sah, T. T. Yang and Ch. Wang, “The Superconducting RF Cavity and 500 mA Beam Current Upgrade Project at Taiwan Light Source,” Proceedings of EPAC, pp. 654-656, 2000.
8. J. Mammosser, P. Kneisel and J. F. Benesch, “Analysis of Mechanical Fabrication Experience with CEBAF’s Production SRF Cavtities,” Report of CEBAF 93-019, 1993.
9. J. Kirchgessner, “Thought on the Very High Value of dF/dP or Pressure Sensitivity of the B Cell Cavity in the MTM Cryostat,” Report of SRF 940321-01, Laboratory of Nuclear Studies, Cornell University, 1994.
10. J. Kirchgessner and S. Belomestnykh, “On the Pressure Compensation for the B-cell Cavity in the MARK II Cryostat,” Report of SRF 970624-06, Laboratory of Nuclear Studies, Cornell University, 1997.
11. S. Belomestnykh, “Calculations of the Frequency Shift due to B-Cell Cavity Shape Deformations,” Report of SRF-940330-2, Cornell University, Ithaca, NY, 1994.
12. 高福聲, ”低溫超導共振腔之結構變形對內建電磁場特性之影響,” 國立清華大學動力機械工程所碩士論文,2002.13. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, P. J. Chou and M. J. Huang, “A Coupled-Field Analysis on RF Cavity,” Partical Accelerator Conference, Chicago, U.S.A., pp. 1127-1129, 2001.
14. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, F. S. Kao, M. K. Yeh and M. J. Huang, “A Coupled-Field Analysis on A 500 MHz Superconducting Radio Frenquency Niobium Cavity,” Proceedings of EPAC, pp. 2259-2261, Paris, France, 2002.
15. C. Compton, T. Bieler, B. Simkin, and S, Jadhav, “Measured Properties of High RRR Niobium,” Report of National Superconducting Cyclotron Laboratory, August 9, 2000.
16. M. G. Rao and P. Kneisel, “Mechanical Properties of High RRR Niobium at Cryogenic Temperatures,” Advances in Cryogenic Engineering, Vol. 40, pp. 1383 — 1390, 1994.
17. K. Ishio, K. Kikuchi, J. Kusano, M. Mizumoto, K. Mukugi, A. Naito, N. Ouchi, Y. Tsuchiya and K. Saito, “Fracture Toughness and Mechanical Properties of Pure Niobium and Welded Joints for Superconducting Cavities at 4 K,” Proceedings of the 9th Workshop on RF Superconduction, Santa Fe, New Maxico, USA, 1999.
18. D. Abhijit, W. Henry and Jr. Haslach, “Mechanical Design Failure Models for Buckling,” IEEE Transactions on Reliability, Vol. 42, No. 1, pp. 9-16, 1993.
19. M. Ohga, T. Hara and K. Kawaguchi, “Buckling Mode Shapes of Thin-Walled Members,” Computers and Structures, Vol. 54, No. 4, pp. 767-773, 1993.
20. M. H. Schneider, “Investigation of the Stability of Imperfect Cylinders Using Structural Models,” Engineering Structures, Vol. 18, No. 10, pp. 792-800, 1996.
21. M. C. Lin and M. K. Yeh, “Buckling of Elastoplastic Circular Cylindrical Shells Under Axial Compression,” AIAA Journal, Vol. 32, No. 11, pp. 2309-2315, 1994.
22. M. K. Yeh, M. C. Lin and W. T. Wu, “Bending Buckling of an Elastoplastic Cylindrical Shell with a Cutout,” Engineering Structures, Vol. 21, No. 11, pp. 996-1005, 1999.
23. M. C. Lin and M. K. Yeh, “Buckling and Postbuckling Behavior of Elastoplastic Spherical Shells with Apical Cutout Under Ring Load,” AIAA Journal, Vol. 33, No. 9, pp. 1728-1733, 1995.
24. M. K. Yeh and C. C. Wang, “Buckling of Elastoplastic Spherical Shells Under Apical Loading,” Proceedings of the 12th National Conference on Mechanical Engineering, CSME, Chiayi, Taiwan, ROC, Solid Mechanics Vol., pp.19-28, 1995. (in Chinese)
25. L. A. Taber, “Large Deflection of a Fluid-Filled Spherical Shell Under a Point Load,” ASME Journal of Applied Mechanics, Vol. 49, pp. 121-128, 1982.
26. J. Cagan and L. A. Taber, “Large Deflection Stability of Spherical Shells With Ring Loads,” ASME Journal of applied Mechanics, Vol. 53, pp. 897-901, 1986.
27. W. Walter and A. Ursula, “Buckling Behavior of Imperfect Spherical Shells,” Journal of Non-linear Mechanics, Vol. 37, pp. 589-604, 2002.
28. R. H. Liu, and Z. Q. Cheng, “On the Non-linear Buckling of Circular Shallow Spherical Sandwich Shells Under the Action of Uniform Edge Moments,” Non-Linear Mechanics, Vol. 30, No. 1, pp. 33-43, 1995.
29. G. Krizhevsky, and Y. Stavsky, “Refined Theory for Non-linear Buckling of Heated Composite Shallow Spherical Shells,” Computers and Structures, Vol. 55, No. 6, pp. 1007-1014, 1995.
30. S. Gellin, “Effect of an Axisymmetric Imperfection on the Plastic Buckling of an Axially Compressed Cylindrical Shell,” ASME Journal of Applied Mechanics, Vol. 46, pp. 125-131, 1979.
31. S. Naili and C. Oddou, “Buckling of a Short Cylindrical Shell Surrounded by an Elastic Medium,” ASME Journal of Applied Mechanics, Vol. 67, pp. 212-214, 2000.
32. G. D. Galletly, S. James, J. Kruzelecki and K. Pemsing, “Interactive Buckling Tests on Cylinders Subjected to External Pressure and Axial Compression,” ASME Journal of Pressure Vessel Technology, Vol. 109, pp. 10-18, 1987.
33. M. Cai, J. M. F. G. Holst and J. M. Rotter, “Buckling Strength of Thin Cylindrical Shells Under Localized Axial Compression,” 15th ASCE Engineering Mechanics Conference, pp. 1-8, Columbia University, New York, June, 2002.
34. T. Vodenitcharova, and P. Ansourian, “Buckling of Circular Cylindrical Shells Subject to Uniform Lateral Pressure,” Engineering Structures, Vol. 18, No. 8, pp. 604-614, 1996.
35. S. Sathasivam, “Buckling Analysis Applied to a Submarine,” http://www2. umist.ac.uk/isd/software/abaqus-ug/proceedings00/adobe_form%5Cp18.pdf
36. L. A. Godoy, and J. C. Mendez-Degró, “Buckling of Aboveground Storage Tanks with Conical Roof,” Thin-Walles Structure, Oxford, 2001.
37. S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability, 2nd ed., McGraw Hill, New York, 1961.
38. D. O. Brush and B. O. Almroth, Buckling of Bars, Plates, and Shells, McGraw Hill, New York, 1975.
39. ANSYS Element Reference. 000855. Eighth Edition. SAS IP, Inc.
40. ANSYS Theory Reference. 000855. Eighth Edition. SAS IP, Inc.
41. http://www.atos-group.nl/uk/engineering/project_hubblesa.shtml
42. M. A. Crisfield, “A Fast Incremental/Iterative Solution Procedure that Handles ‘Snap-through’,” Computers and Structures, Vol. 13, pp. 55-62, 1981.
43. W. R. B. Forde, and S. F. Stiemer, “Improved Arc Length Orthogonality Methods for Nonlinear Finite Element Analysis,” Computers and Structures, Vol. 27, No. 5, pp. 625-630, 1987.
44. C. Rajakumar and C. R. Rogers, “The Lanczos Algorithm Applied to Unsymmetric Generalized Eigenvalue Problems,” International Journal for Numerical Method in Engineering, Vol. 32, pp. 1009-1026, 1991.
45. R. G. Grimes, J. G. Lewis and H. D. Simon “A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems,” SIAM Journal Matrix Analysis Applications, Vol. 15, pp. 228-272, 1994.
46. ASTM E8M-89, “Standard Test Methods for Tension Testing of Metallic Materials,” Annual Book of ASTM Standards, Section 3, Vol. 03.01, pp. 147-161, 1989.