跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 12:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳伯毅
研究生(外文):Bo-Yi Chen
論文名稱:低溫超導共振腔之挫曲及變形分析與實驗
論文名稱(外文):Buckling and Deformation Beavior of Superconducting Radio Frequency Cavity
指導教授:葉孟考葉孟考引用關係
指導教授(外文):Meng-Kao Yeh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:86
中文關鍵詞:低溫超導共振腔挫曲
外文關鍵詞:Superconducting Radio Frequency CavityBuckling
相關次數:
  • 被引用被引用:5
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
同步輻射光在科技研究應用方面扮有相當重要的角色,研究人員可以藉由同步輻射光從事各種基礎與應用科學研究。在同步輻射光產生的過程中,需藉由高頻共振腔提供電子束能量。為確保光源品質,超導共振腔體可藉由沿軸向拉伸或壓縮來調整電磁場的共振頻率。在調整共振頻率的過程中,若過度壓縮,造價昂貴的腔體可能發生挫曲或塑性變形而無法繼續使用。本文以ANSYS軟體分析低溫超導共振腔在不同溫度、外部壓力及不同材料常數時的挫曲及變形行為。在實驗方面,使用一個和500 MHz共振腔幾何外形相似的1.5 GHz腔體模型進行實驗,觀察其變形行為及挫曲時的端面位移量,以驗證ANSYS的分析結果。分析結果顯示具彈性材料的共振腔體挫曲負載較彈塑性共振腔體高出許多;共振腔體的厚度越大、兩端的開口越大,挫曲負載值亦隨之增大;共振腔體額外承受一大氣壓的外壓力後,腔體的挫曲負載及變形行為並無明顯改變。本文之研究將有助於預測可容許的腔體調整範圍,並建立薄殼式共振腔的結構分析與設計能力。

頁次
摘要………………………………………………………………. i
誌謝………………………………………………………………… ii
目錄………………………………………………………………. iii
圖表目錄…………………………………………………………. v
第一章 簡介……………………………..………………………. 1
1.1 研究動機………………………...……………………..1
1.2 文獻回顧…………………………………………….....2
1.3 研究目標……………………...…………………………..5
第二章 有限單元模擬分析…………..…………………………. 7
2.1結構分析流程….………………...…………………….. 7
2.1.1 幾何模型建立………………...…...………………8
2.1.2 單元選取…………………………...…...…………9
2.1.3 有限單元網格之建立……..………………………10
2.1.4 邊界條件設定……………………………………….11
2.2 有限單元析……………………………………………...12
2.2.1 機械結構之有限單元分析………………………….12
2.2.2 牛頓-拉夫森法(Newton-Raphson Method)………17
2.2.3 弧長法(Arc-Length Method)………...…………17
2.2.2 特徵挫曲分析………...……………………………19
第三章 實驗程序……………………………………………………20
3.1 實驗設備…………………………………………………..20
3.2 材料常數量測………………………………………………20
3.3 試件尺寸……………………………………………………21
3.4 挫曲實驗……………………………………………………22
第四章 結果與討論…………………………………………………24
4.1 非完美尤拉柱的挫曲分析…………………………………24
4.2 圓柱殼受軸向負載的挫曲分析……………………………26
4.3 兩端管徑不同之圓柱殼受軸向負載之挫曲分析…………29
4.4 磷銅腔體之挫曲分析與實驗…………………………….30
4.5 500 MHz薄殼腔體受軸向壓縮位移之挫曲………………31
4.5.1 500 MHz薄殼腔體厚度改變之影響…………………34
4.5.2 500 MHz薄殼腔體溫度改變之影響…….…………36
4.5.3 500MHz薄殼腔體開口之影響……………..………37
4.6 1.5 GHz 薄殼腔體受軸向壓縮位移之挫曲分析…………38
4.6.1 1.5 GHz薄殼腔體厚度改變之影響…………………38
4.6.2 1.5 GHz薄殼腔體開口之影響…...………………38
4.6.3 內外壓力差對1.5 GHz 腔體挫曲的影響…………39
第五章 結論…………………………………………………….40
參考文獻………………………………………………………42
圖表………………………………………………………………45
附錄………………………………………………………………80
附錄圖表…………………………………………………………84

參考文獻
1. R. A. Rimmer, G. Koehler, D. Li, N. Hartman, N. Folwell, J. Hodgson, K. Ko and B. McCandless, “PEP-II RF Cavity Revisited,” Note of CBP Tech 197 LCC-0032, December 3, 1999.
2. T. T. Yang, M. C. Lin, Ch. Wang, L. H. Chang, S. S. Chang, W. K. Lau and C. C. Kuo, “On the Mechanical Design of a 1.5GHz Landau Cavity,” Proceedings of the 1997 Particle Accelerator Conference, pp. 3054-3056, 1997.
3. H. Padamsee, J. Knobloch and T. Hays, RF Superconductivity for Accelerators, Wiley & Sons, Inc.,, New York, 2000.
4. H. Padamsee, “The Science and Technology of Superconducting Cavity for Accelerators,” Superconducting Science Technology, Vol. 14, pp. 28-51, 2001.
5. 羅國輝、王兆恩、張隆海與林明泉, “同步輻射儲存環之低溫超導共振腔簡介,” 同步輻射研究中心簡訊, No. 46, pp. 14-19, 2000.
6. H. Vogel, M. Peinger, M. Pekeler, P. Von Stein, L. H. Chang, C. T. Chen, M. C. Lin, G.. H. Luo, R. Sah, Ch. Wang, S. Belomestnykh, J. Knobloch, H. Padamsee and J. Sears, “Superconducting Accelerator Modules for the Taiwan Light Source,” Proceedings of EPAC, pp. 711-713, 2000.
7. G. H. Luo, L. H. Chang, C. C. Kuo, M. C. Lin, R. Sah, T. T. Yang and Ch. Wang, “The Superconducting RF Cavity and 500 mA Beam Current Upgrade Project at Taiwan Light Source,” Proceedings of EPAC, pp. 654-656, 2000.
8. J. Mammosser, P. Kneisel and J. F. Benesch, “Analysis of Mechanical Fabrication Experience with CEBAF’s Production SRF Cavtities,” Report of CEBAF 93-019, 1993.
9. J. Kirchgessner, “Thought on the Very High Value of dF/dP or Pressure Sensitivity of the B Cell Cavity in the MTM Cryostat,” Report of SRF 940321-01, Laboratory of Nuclear Studies, Cornell University, 1994.
10. J. Kirchgessner and S. Belomestnykh, “On the Pressure Compensation for the B-cell Cavity in the MARK II Cryostat,” Report of SRF 970624-06, Laboratory of Nuclear Studies, Cornell University, 1997.
11. S. Belomestnykh, “Calculations of the Frequency Shift due to B-Cell Cavity Shape Deformations,” Report of SRF-940330-2, Cornell University, Ithaca, NY, 1994.
12. 高福聲, ”低溫超導共振腔之結構變形對內建電磁場特性之影響,” 國立清華大學動力機械工程所碩士論文,2002.
13. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, P. J. Chou and M. J. Huang, “A Coupled-Field Analysis on RF Cavity,” Partical Accelerator Conference, Chicago, U.S.A., pp. 1127-1129, 2001.
14. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, F. S. Kao, M. K. Yeh and M. J. Huang, “A Coupled-Field Analysis on A 500 MHz Superconducting Radio Frenquency Niobium Cavity,” Proceedings of EPAC, pp. 2259-2261, Paris, France, 2002.
15. C. Compton, T. Bieler, B. Simkin, and S, Jadhav, “Measured Properties of High RRR Niobium,” Report of National Superconducting Cyclotron Laboratory, August 9, 2000.
16. M. G. Rao and P. Kneisel, “Mechanical Properties of High RRR Niobium at Cryogenic Temperatures,” Advances in Cryogenic Engineering, Vol. 40, pp. 1383 — 1390, 1994.
17. K. Ishio, K. Kikuchi, J. Kusano, M. Mizumoto, K. Mukugi, A. Naito, N. Ouchi, Y. Tsuchiya and K. Saito, “Fracture Toughness and Mechanical Properties of Pure Niobium and Welded Joints for Superconducting Cavities at 4 K,” Proceedings of the 9th Workshop on RF Superconduction, Santa Fe, New Maxico, USA, 1999.
18. D. Abhijit, W. Henry and Jr. Haslach, “Mechanical Design Failure Models for Buckling,” IEEE Transactions on Reliability, Vol. 42, No. 1, pp. 9-16, 1993.
19. M. Ohga, T. Hara and K. Kawaguchi, “Buckling Mode Shapes of Thin-Walled Members,” Computers and Structures, Vol. 54, No. 4, pp. 767-773, 1993.
20. M. H. Schneider, “Investigation of the Stability of Imperfect Cylinders Using Structural Models,” Engineering Structures, Vol. 18, No. 10, pp. 792-800, 1996.
21. M. C. Lin and M. K. Yeh, “Buckling of Elastoplastic Circular Cylindrical Shells Under Axial Compression,” AIAA Journal, Vol. 32, No. 11, pp. 2309-2315, 1994.
22. M. K. Yeh, M. C. Lin and W. T. Wu, “Bending Buckling of an Elastoplastic Cylindrical Shell with a Cutout,” Engineering Structures, Vol. 21, No. 11, pp. 996-1005, 1999.
23. M. C. Lin and M. K. Yeh, “Buckling and Postbuckling Behavior of Elastoplastic Spherical Shells with Apical Cutout Under Ring Load,” AIAA Journal, Vol. 33, No. 9, pp. 1728-1733, 1995.
24. M. K. Yeh and C. C. Wang, “Buckling of Elastoplastic Spherical Shells Under Apical Loading,” Proceedings of the 12th National Conference on Mechanical Engineering, CSME, Chiayi, Taiwan, ROC, Solid Mechanics Vol., pp.19-28, 1995. (in Chinese)
25. L. A. Taber, “Large Deflection of a Fluid-Filled Spherical Shell Under a Point Load,” ASME Journal of Applied Mechanics, Vol. 49, pp. 121-128, 1982.
26. J. Cagan and L. A. Taber, “Large Deflection Stability of Spherical Shells With Ring Loads,” ASME Journal of applied Mechanics, Vol. 53, pp. 897-901, 1986.
27. W. Walter and A. Ursula, “Buckling Behavior of Imperfect Spherical Shells,” Journal of Non-linear Mechanics, Vol. 37, pp. 589-604, 2002.
28. R. H. Liu, and Z. Q. Cheng, “On the Non-linear Buckling of Circular Shallow Spherical Sandwich Shells Under the Action of Uniform Edge Moments,” Non-Linear Mechanics, Vol. 30, No. 1, pp. 33-43, 1995.
29. G. Krizhevsky, and Y. Stavsky, “Refined Theory for Non-linear Buckling of Heated Composite Shallow Spherical Shells,” Computers and Structures, Vol. 55, No. 6, pp. 1007-1014, 1995.
30. S. Gellin, “Effect of an Axisymmetric Imperfection on the Plastic Buckling of an Axially Compressed Cylindrical Shell,” ASME Journal of Applied Mechanics, Vol. 46, pp. 125-131, 1979.
31. S. Naili and C. Oddou, “Buckling of a Short Cylindrical Shell Surrounded by an Elastic Medium,” ASME Journal of Applied Mechanics, Vol. 67, pp. 212-214, 2000.
32. G. D. Galletly, S. James, J. Kruzelecki and K. Pemsing, “Interactive Buckling Tests on Cylinders Subjected to External Pressure and Axial Compression,” ASME Journal of Pressure Vessel Technology, Vol. 109, pp. 10-18, 1987.
33. M. Cai, J. M. F. G. Holst and J. M. Rotter, “Buckling Strength of Thin Cylindrical Shells Under Localized Axial Compression,” 15th ASCE Engineering Mechanics Conference, pp. 1-8, Columbia University, New York, June, 2002.
34. T. Vodenitcharova, and P. Ansourian, “Buckling of Circular Cylindrical Shells Subject to Uniform Lateral Pressure,” Engineering Structures, Vol. 18, No. 8, pp. 604-614, 1996.
35. S. Sathasivam, “Buckling Analysis Applied to a Submarine,” http://www2. umist.ac.uk/isd/software/abaqus-ug/proceedings00/adobe_form%5Cp18.pdf
36. L. A. Godoy, and J. C. Mendez-Degró, “Buckling of Aboveground Storage Tanks with Conical Roof,” Thin-Walles Structure, Oxford, 2001.
37. S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability, 2nd ed., McGraw Hill, New York, 1961.
38. D. O. Brush and B. O. Almroth, Buckling of Bars, Plates, and Shells, McGraw Hill, New York, 1975.
39. ANSYS Element Reference. 000855. Eighth Edition. SAS IP, Inc.
40. ANSYS Theory Reference. 000855. Eighth Edition. SAS IP, Inc.
41. http://www.atos-group.nl/uk/engineering/project_hubblesa.shtml
42. M. A. Crisfield, “A Fast Incremental/Iterative Solution Procedure that Handles ‘Snap-through’,” Computers and Structures, Vol. 13, pp. 55-62, 1981.
43. W. R. B. Forde, and S. F. Stiemer, “Improved Arc Length Orthogonality Methods for Nonlinear Finite Element Analysis,” Computers and Structures, Vol. 27, No. 5, pp. 625-630, 1987.
44. C. Rajakumar and C. R. Rogers, “The Lanczos Algorithm Applied to Unsymmetric Generalized Eigenvalue Problems,” International Journal for Numerical Method in Engineering, Vol. 32, pp. 1009-1026, 1991.
45. R. G. Grimes, J. G. Lewis and H. D. Simon “A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems,” SIAM Journal Matrix Analysis Applications, Vol. 15, pp. 228-272, 1994.
46. ASTM E8M-89, “Standard Test Methods for Tension Testing of Metallic Materials,” Annual Book of ASTM Standards, Section 3, Vol. 03.01, pp. 147-161, 1989.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊