跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:45cf:c86b:e393:b18b) 您好!臺灣時間:2025/01/13 08:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黎瑞雍
研究生(外文):Rui-youg Li
論文名稱:經熱循環之Gr/PEEK及Gr/Epoxy複合材料螺栓接合構件之靜態與疲勞分析
論文名稱(外文):Static and fatigue analysis of Gr/PEEK and Gr/Epoxy fastened joints after thermal cyclic loading
指導教授:葉銘泉葉銘泉引用關係
指導教授(外文):Ming-Chuen Yip
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:83
中文關鍵詞:熱循環螺栓接合殘留強度承壓強度疲勞壽命光彈分析複合材料
外文關鍵詞:thermal cyclesbolted-jointresidual stregthbearing strengthfatigue lifephotoelasticcomposites material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
複合材料常用來製造航太、汽車以及民生工業零組件。當元件在高低溫變化的狀況之下會有熱循環負載發生。如在沙漠、太空中早晚溫差以及飛機航行於同溫層與降落地面時有-500C∼500C之溫差,導致元件內部的損傷,引起主體結構的崩潰,造成意外事故的發生。所以,材料因熱循環而降低結構強度的研究就顯得格外重要。因此本文針對熱固、熱塑性等二種複合材料經螺栓接合後並考量熱循環效應。發現經熱循環結構在低應力等級負荷的疲勞負載易累積碎削以提升側撐力,進而提升疲勞壽命。
螺栓孔在經不同模組之二螺栓接合後,有局部的預應力引起應力不連續發生,三種不同之模組在經光彈分析後得知,Case 2在靜態負載下最能充分發揮螺栓接合之功用。殘留強度之測試中Case 2與Case 3分別在高、低應力等級有較高之殘留強度,並擴展Pari’s Law進行二螺栓接合之殘留強度以及脫層面積的預測,進而推論不同應力等級之殘留強度與結構之脫層面積之臨界破壞面積。

In this study, factors effecting the strength and fatigue life of [0/45/90/-45]2s thermo-plastic and thermo-set bolted joints laminate subjected to thermal-cycle effect has been investigated. The fatigue tests were performed at various stress levels under tension-tension loading with a fatigue frequency of 5 Hz. It found that thermo-plastic component had good fatigue life and bearing stress. Fatigue life is reduced after thermal-cycles loading.
The stress distribution of the three kinds of two-bolted joints laminated graphite-epoxy were determined experimentally using photoelasticity to present the stress around the hole edge and across the net-section. Which one component had the ability to transfer load to have small influence of bolt configuration on the gross section failure stress for the laminates.
Expanded the Paris Law to fit the residual strength of three cases of the joints suggest a relation between the joint resistance to fatigue and the degree of stress levels. This make is possible to predict the residual strength of composite joints with different configuration.

表目錄………………………………………………………Ⅲ
圖目錄………………………………………………………Ⅴ
第一章 前言………………………………………………1
第二章 研究動機與目的…………………………………3
第三章 文獻回顧…………………………………………4
3-1 CFRP 複合材料 與 Graphite/PEEK……….4
3-2 疲勞破壞……………………………………..4
3-3 複材的損傷機制……………………………..5
3-4 複材經機械連接後之靜態與疲勞性質……...6
3-5 應力(S)與破壞週次(Nf)間的關係……………9
3-6 光彈分析…………………………………….10
3-7 Paris Law…………………………………….11
3-8 熱循環之影響效應………………………….13
第四章 實驗內容及程序……………………………………14
4-1 實驗材料、試劑………………………………14
4-2 實驗儀器及設備……………………………...14
4-3 試片設計及製程……………………………...17
4-4 實驗流程……………………………………...18
4-5 試片預估數量………………………………...22
第五章 結果與討論…………………………………………24
5-1 原始試片(Gr/PEEK與Gr/Epoxy)……………. 24
5-2 單一螺栓接合構件(Gr/PEEK與Gr/Epoxy)
之機械性質分析……………………………...25
5-3 單一螺栓接合構件(Gr/PEEK與Gr/Epoxy)經熱循環之機械性質分析…………………..28
5-4 二螺栓接合構件之機械性質分析(Gr/Epoxy) …………………………………….30
5-5 二螺栓接合之Gr/Epoxy平板承受熱循環
後(TEB2)之承壓強度與疲勞測試…………...32
5-6 殘留強度分析………………………………....33
第六章 結論…………………………………………………36
參考文獻………………………………………………………38
附表……………………………………………………………42
附圖……………………………………………………………55
表目錄
表 5-1 Gr/PEEK與Gr/Epoxy原始試片之靜態強度……………...42
表 5-2 Gr/Epoxy 試片之疲勞壽命………………………………...43
表 5-3 Gr/PEEK 試片之疲勞壽命………………………………...43
表 5-4 PB1 扭力6 Kgf-cm之靜態承壓強度……………………...44
表 5-5 PB1扭力0.5 Kgf-cm之靜態承壓強度…………………….44
表 5-6 EB1 扭力6 Kgf-cm之靜態承壓強度……………………...45
表 5-7 EB1 元件之疲勞壽命……………………………………....45
表 5-8 PB1 元件之疲勞壽命………………………………………46
表 5-9 TEB1 扭力6 Kgf-cm之靜態承壓強度…………………....46
表 5-10 TEB1 元件之疲勞壽命…………………………………….47
表 5-11 TPB1 扭力6 Kgf-cm之靜態承壓強度…………………....47
表 5-12 TPB1 元件之疲勞壽命………………………………….…48
表 5-13 EB2 扭力6 Kgf-cm之靜態承壓強度……………………..48
表 5-14 EB2三種模組之靜態承壓強度………………………….…49
表 5-15 TEB2 扭力6 Kgf-cm之靜態承壓強度……………….…...49
表 5-16 EB2 元件之疲勞壽命………………………………………50
表 5-17 TEB2 元件之疲勞壽命…………………………………….50
表 5-18 EB2與TEB2 在承受70應力等級5000週次後
之殘留承壓強度……………………………………………51
表 5-19 EB2三種模組在承受70應力等級5000週次後
之殘留承壓強度……………………………………………51
表 5-20 EB2三種模組在承受60應力等級5000週次後
之殘留承壓強度……………………………………………52
表 5-21 EB2三種模組在承受50應力等級5000週次後
之殘留承壓強度……………………………………………52
表 5-22 殘留強度於70應力等級負荷中實驗與預測值…………...53
表 5-23 殘留強度於60應力等級負荷中實驗與預測值…………...53
表 5-24 殘留強度於50應力等級負荷中實驗與預測值……………54
圖目錄
圖3-1 複合材料積層板損壞發展示意圖…………………………..55
圖3-2 概述複材與螺栓接合面破壞情況…………………………..55
圖3-3 d/w/2與載面積所能承受的總破壞應力關係圖……………56
圖3-4 Double lap 螺栓接合試片承受拉(a)、壓(b)負載時
螺栓受力圖…………………………………………………..56
圖 3-5 光彈條紋分佈趨勢圖………………………………………...57
圖4-1 實驗流程圖…………………………………………………..57
圖4-2 PEEK熱壓成形試片與模具疊層圖…………………………58
圖4-3 PEEK-熱壓成型溫度壓力與時間圖………………………...58
圖4-4 Gr/Epoxy熱壓成形試片與模具疊層圖……………………..59
圖4-5 Gr/Epoxy熱壓成型溫度壓力與時間圖…………………….59
圖4-6 原始試片尺寸示意圖………………………………………..60
圖4-7 螺栓接合尺寸示意圖………………………………………..60
圖4-8 熱循環溫度-時間圖………………………………………….61
圖4-9 試片受力簡述圖……………………………………………..61
圖4-10 萬能試驗機控制示意圖……………………………………..62
圖5-1 Gr/Epoxy與Gr/PEEK靜態強度比較圖……………………62
圖 5-2 原始試片負荷應力與疲勞週次數之關係………………….63
圖 5-3 二次彎矩圖與示意圖……………………………………….64
圖 5-4 螺栓抽離後造成的孔洞…………………………………….64
圖 5-5 承受拉伸負載時材料之行為模式………………………….65
圖 5-6 延伸長度造成與螺栓的關係示意圖……………………….65
圖 5-7 PB1之靜拉張破壞………………………………………….66
圖 5-8 PB1與EB1 S-N 曲線比較圖…………………………….66
圖 5-9 SEM觀察原始試片與經熱循環斷面………………………67
圖 5-10 TEB1與EB1 碎削累積示意圖…………………………….67
圖 5-11 TEB1與EB1 承壓負載與行程量之關係圖……………….68
圖 5-12 EB1與TEB1 S-N曲線比較圖……………………………68
圖 5-13 PB1與TPB1 S-N曲線比較圖…………………………….69
圖 5-14 TPB1與TEB1 S-N曲線比較圖………………………….70
圖 5-15 EB2結構脫層分佈情況…………………………………….70
圖 5-16 EB2 之靜拉張破壞…………………………………………71
圖 5-17 EB2 三種螺栓接合模組示意圖……………………………71
圖 5-18 Case 1螺栓扭力值為0.5Kgf-cm光彈圖…………………..72
圖 5-19 Case 1螺栓扭力值為6 Kgf-cm光彈圖……………………72
圖 5-20 四種不同Case下之靜態承壓強度…………………………73
圖 5-21 Case 2螺栓扭力值為6 Kgf-cm光彈圖…………………….73
圖 5-22 Case 3螺栓扭力值為6 Kgf-cm光彈圖……………………74
圖 5-23 Case 2 與Case3 脫層比較圖……………………………..75
圖 5-24 Case 2與Case 3於靜態負荷之損傷情況………………….75
圖 5-25 TEB2與EB2 碎削累積示意圖…………………………….76
圖 5-26 EB2與TEB2 S-N曲線比較圖…………………………...76
圖 5-27 EB2 50應力等級延伸量與週次數關係圖……………….77
圖 5-28 EB2 60應力等級延伸量與週次數關係圖……………….77
圖 5-29 EB2 70應力等級延伸量與週次數關係圖……………….78
圖 5-30 Case 1 承壓強度與應力等級關係圖………………………78
圖 5-31 Case 2與Case 3 承壓強度與應力等級關係圖……………79
圖 5-32 Case 1 SAM掃描脫層圖………………………………….79
圖 5-33 Case 2 SAM掃描脫層圖………………………………….80
圖 5-34 Case 3 SAM掃描脫層圖………………………………….80
圖 5-35 三種Case之殘留強度對應力等級關係之比較圖…………81
圖 5-36 Case 1 實驗與理論預測之殘留強度對應力等級之關係比較圖…………………………..………………………………..81
圖 5-37 Case 2 實驗與理論預測之殘留強度對應力等級之關係比較圖……………………………………………………………82
圖 3-38 Case 3 實驗與理論預測之殘留強度對應力等級之關係比較圖……………………………………………………………82
圖 3-39 單一螺栓承壓強度比較圖……………………………….....83

1.馬振基, “高分子複合材料上冊,” 1995, pp.278-279.
2.S. L. Gao and J. K. Kim, “Cooling Rate Influences in Carbon Fibre/PEEK Composites. Part 1. Crystallimity and Interface Adhesion,” Composites:part A, Vol. 31, 2000, pp.517-530.
3.N. R. S. Vure, and R. D. Kriz, “Effect of Cooling Rate and Stacking Sequence on the Fatigue Behavior of Notched Quasi-Isotropic AS4/PEEK Laminates,” Journal of Composites Technology & Research, Vol. 18, NO. 2, 1996, pp.127-134.
4.許健豪, “熱壓修補對經低能量衝擊及熱循環之Gr/PEEK複合材料軸向疲勞行為影響之研究,” 國立清華大學動力機械系碩士論文,2002.
5.H. O. Fuch and R. I. Stephens, “Metal Fatigue in Engineering,” John Willy and Sons, New York, 1980.
6.D. S. Saunders and G. Clark, “Fatigue Damage in Composite Laminates," Materials Forum, Vol. 17, 1993, pp.309-331.
7.R. Talerja, “Fatigue of Composite Materials” Technomic Publishing Co., Inc., Lancaster, Pennsylvania, U.S.A., 1987,pp.3-58.
8.T. Ireman, T. Ranvik and I. Eriksson, “On damage development in mechanically fastened composite laminates,” Composite structure, Vol. 49 , 2000, pp.151-171.
9.E. Persson and I. Eriksson, “Fatigue of multiple-row bolted joints in carbon/epoxy laminates: ranking of factors affecting strength and fatigue life,” International Journal of Fatigue, Vol. 21, 1999, pp. 337-353.
10.L. I. Eriksson, “Contact stress in bolted joints of composite laminates,” Composites Structures, Vol. 6, 1986, pp.57-75.
11.J. D. Pratt, “Blind fatigue of Advanced composites, ” CSME, Fatigue Advanced Composites Conference, Renton, WA, Oct 1986.
12.R. Starikov and J. Schön, ”Experimental study on fatigue resistance of composite joints with protruding-head bolts” Composite Structures, Vol. 55 , 2002, pp.1-110.
13.R. Starikov, J. Schön, “Quasi-static behavior of composite joints with protruding-head bolts,” Composites Structure, Vol. 51, No. 4, 2001, pp.411-25.
14.C. Y. Kam, “Bolt Hole Growth in Graphite-Epoxy Laminates for Clearance and Interference Fits When Subjected to Fatigue Loads,” Fatigue of Fibrous Composite Materials, ASTM STP 723, American Society for Testing and Materials, 1981, pp.21-30.
15.L. Tong, “Bearing failure of composite bolted joints with non-uniform bolt-to-washer clearance,” Composites Part A, Vol. 31, 2000, pp. 609-615.
16.M. A. McCarthy, V. P. Lawlor, W. F. Stanley and C. T. McCarthy, “Bolt-hole clearance effects and strength criteria in single-bolt, single lap, composite bolted joints,” Composites Science and Technology, Vol. 62, 2002, pp.1415-1431.
17.J. Schön and T. Nyman, “Spectrum fatigue of composite bolted joints,” International Journal of Fatigue, Vol. 24, 2002, pp.273-279.
18.R. Strikov and J. Schön, “Local fatigue behavior of CFRP bolted joints,” Composites Science and Technology, Vol. 62, 2002, pp. 243-253.
19.R.E. Little and P.K. Mallick, ”Fatigue of Bolted Joints in SMC-R18 Sheet Molding Compound Composites,” Journal of Composites Technology & Reach, JCTRER, Vol. 12, No. 3, 1990, pp.155-163.
20.H. S. Wang, C. L. Hung and F. K. Chang. “Bearing failure of bolted composite joints. Part I: Experimental characterization,” Journal of Composite Materials, Vol. 30, 1996, pp.1284-1313.
21.T. Ireman, T. Nyman and K. Hellbom, “On Design Methods for Bolted Joints in Composite Aircraft Structures,” Composite Structures, Vol. 25, 1993, pp. 567-578.
22.W. H. Chen, S. S. Lee and J. T. Yeh, “Three-Dimensional Contact Stress Analysis of a Composite Laminate with Bolted Joint,” Composite Structures, Vol. 30, 1995, pp.287-297.
23.L. B. Shokrieh and L. B. Lessard, “Effects of Material Nonlinearity on the Three-Dimensional Stress State of Pin-Loaded Laminates,” Journal of Composite Materials, Vol. 30, 1996, pp.839-861.
24.I. Eriksson, “On the Bearing Strength of Bolted Graphite/Epoxy Laminates,” Journal of Composite Materials, Vol. 24, 1990, pp.1264-1269.
25.S. Kellas, J. Morton and P. T. Curtis, “A Characteristic Fatigue Parameter for Notched Composites,” Int. J. Fatigue, Vol. 13, No. 1, 1991, pp. 35-43.
26.W. Hwnag and K. S. Han, “Fatigue of Composites Fatigue Modulus Concept and Life Prediction,” Journal of Composite Materials, Vol. 20, 1986, pp.154-165.
27.J. W. Dally and W. F. Riley, “Experimental Stress Analysis,” McGraw-Hill, New York, U.S.A., 1991.
28.M. W. Hyer and D. J. Liu, “Stress in Pin-Loaded Orthotropic Plates: Photoelastic Results,” Journal of Composite Material, Vol. 19, No. 2, 1985.
29.P.C. Paris and F. Erdogan. A critical analysis of crack propagation laws. Journal of Basic Engineering, Vol. 85, 1963, pp.528-534.
30.M.-H. R. Jen, J.-M. Hsu and C.-H. Lee “Fatigue Damage in Centrally Notched GR/EP Laminates,” Experimental Mechanics, 1990, pp.360-366.
31.M.-H. R. Jen, J.-M. Hsu and C.-H. Lee “Initiation and Propagation of Delamination in a Centrally Notched Composite Laminate,” Journal of Composite Materials, Vol. 27, N0. 3, 1993, pp.272-302.
32.M. C. Yip and K. C. Lai, “Unaxial Low Cycle Fatigue Behavior of the CFRP Composite Laminates Under Pretorsional Fatigue and Thermal Effects,” Procedding of the 1st Asian-Australasian Conference on Composite Materials, Osaka, Japan, Oct. 1998, pp.719-1~719-4.
33.K. D. Cowley and P. W. R. Beaumont, “Damage Accumulation at Notches and the Fracture Stress of Carbon-Fiber/Polymer Composites : Combined Effects of Stress and Temperature,” Composite Science and Technology, Vol. 57, 1991, pp. 1211-1219.
34.“Standard Test Method for Tension-Tension Fatigue of Oriented Fiber, Resin Matrix Composites,” ASTM D3479-76, 1982.
35.ASTM standard D 5961/D 5961 M-96. Standard test method for bearing response of polymer matrix composite laminate, 1996.
36.“Standard Test Method for Tensile Properties of Fiber-Resin Composites,” ASTM D3039-76, 1989.
37.袁士澤,"CFRP複合材料受螺栓負荷時的靜態與疲勞分析,” 國立清華大學動力機械系碩士論文,1994.
38.陳仁通,"CFRP受螺栓負荷時的疲勞─潛變分析,” 國立清華大學動力機械系碩士論文,1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊