(3.227.208.0) 您好!臺灣時間:2021/04/21 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林鴻賓
研究生(外文):Hung-Pin Lin
論文名稱:壓電致動器之建模與參數鑑別
論文名稱(外文):Piezoelectric Actuator Modeling and Parameters Identification
指導教授:葉廷仁
指導教授(外文):Ting-Jen Yeh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:62
中文關鍵詞:壓電致動器磁滯參數鑑別前饋控制
外文關鍵詞:piezoelectric actuatorhysteresisparameter identificationfeedforward control
相關次數:
  • 被引用被引用:1
  • 點閱點閱:146
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著奈米科技的發展,為了瞭解奈米材料的各種物理、化學特性或是對其進行加工,精密定位控制的研究更顯的重要。因為壓電致動器具有體積小、重量輕響應快、解析度高等特性,故一般奈米等級的操縱器大多以壓電材料為致動器。
然而壓電材料固有的磁滯現象(Hysteresis)卻會降低動態響應特性及定位精度,使得輸入輸出呈非線性關係。為了減低磁滯現象對壓電致動系統的影響,需要建立磁滯模型進而在設計控制器時加入磁滯效應的補償。本文將利用Maxwell磁滯模型和鍵結圖(Bond Graph)建構出壓電材料的磁滯模型,並針對此模型發展一套有系統的即時參數鑑別;然後再根據已獲得的致動器模型在開迴路架構下設計一前饋控制器(Feedforward),以補償磁滯效應所造成的定位誤差,最後則將本文所提出的方法應用於一實際壓電致動平台,以驗證其適用性。

For the purpose of understanding the physical and chemical properties of the nano material as well as performing processing work on it, a manipulator with accuracy in the nano meter range is absolutely necessary. Typically, these nano-scale manipulators are driven piezoelectric actuators. Regardless of the advantages such as lightweight, fast response and high resolution, the piezoelectric actuator also exhibits hysteresis behavior which will seriously limit its performance. In order to achieve more precise control on the piezoelectric actuator, this research is devoted to identifying the hysteresis and developing an algorithm to eliminate the positioning error caused by such an effect. Particularly, we utilize the Maxwell model and Bond-Graph representation to model hysteresis and use the experimental data to estimate the parameters in the model. The model acquired is then used to design a feedforward control so that the piezoelectric actuator can have better positioning performance even when controlled in the open-loop manner.

目 錄
摘 要 I
目 錄 II
圖目錄 IV
表目錄 VI
第一章 緒 論 - 1 -
1.1 前言 - 1 -
1.2 研究動機與目的 - 2 -
1.3 文獻回顧 - 3 -
1.4 本文架構 - 4 -
第二章 壓電致動器簡介 - 5 -
2.1 PZT壓電材料與壓電效應(Piezoelectric Effect) - 5 -
2.2 壓電致動器的分類 - 7 -
2.3 壓電致動器的基本特性 - 9 -
第三章 鍵結圖簡介與壓電致動器之模型 - 13 -
3.1 鍵結圖基本元件介紹 - 13 -
3.2 鍵結圖基本元件其表示符號與因果關係 - 16 -
3.3 壓電致動系統之描述 - 17 -
3.4 Maxwell遲滯模型 - 19 -
3.5 壓電致動器之模型 - 23 -
第四章 模型參數鑑別與前饋控制器 - 29 -
4.1 模型參數鑑別 - 29 -
4.2 控制器之設計 - 34 -
第五章 實驗結果 - 37 -
5.1實驗設計與配置 - 37 -
5.2 實驗結果 - 40 -
第六章 結 論 - 47 -
6.1 本文貢獻 - 47 -
6.2 未來方向 - 48 -
參考文獻 - 49 -

[1] H. Aoyama and O. Fuchiwaki, “Flexible micro-processing by multiple micro robots in SEM,” IEEE International Conference on Robotics and Automation, May 2001.
[2] A. Bergander, J.-M. Breguet, C. Schmitt and R. Clavel, “Micropositioners for microscopy applications based on the stick-slip effect,” IEEE International Symposium on Micromechatronics and Human Science, 2000.
[3] T. Fukuda and F. Arai, “Prototyping design and automation of micro/nano manipulation system,” IEEE International Conference on Robotics and Automation, April 2000.
[4] L. Dong, F. Arai and T. Fukuda, “3D nanorobotic manipulations of multi-walled carbon nanotubes,” IEEE International Conference on Robotics and Automation, May 2001.
[5] Physik Instrumente, “MicroPositioning, NanoPositioning, NanoAutomation Solutions for Cutting-Edge Technologies,” 2001.
[6] J. W. Gardner and H. T. Hingle, “From instrumentation to nanotechnology,” 1990.
[7] T. Sakurai and Y. Watanabe, “Advances in scanning probe microscopy,” 2000.
[8] S. T. Smith and D. G. Chetwynd, “Foundations of ultraprecision mechanism Design,” 1992.
[9] T. G. King, M. E. Preston, B. J. M. Murphy and D. S. Cannell, “Piezoelectric ceramic actuators: A review of machinery applications,” Precision Eng., vol. 12, pp. 131-136, 1990.
[10] H. Kaizuka and B. Sui, “A simple way to reduce hysteresis and creep when using piezoelectric actuators,” Japan J. Appl. Phys., vol. 27, no. 5, pp. 773-776, 1988.
[11] C. V. Newcomb, I. Flinn, “Improving the linearity of piezoelectric ceramic actuators,” Electronics Letters, vol. 18, no. 11, pp. 442-444, 1982.
[12] D. C. Jiles and D. L. Atherton, “Theory of ferromagnetic hysteresis (
invited),” J. of Appl. Phys., vol. 55, no. 6, pp. 2115-2120, 1984.
[13] P. Ge and M. Jouaneh, “Modeling hysteresis in piezoceramic actuators,” Precision Eng., vol. 17, pp. 211-221, 1995.
[14] P. Ge and M. Jouaneh, “Generalized Preisach model for hysteresis
nonlinearity of piezoceramic actuator,” Precision Eng., vol. 20, pp. 99-111, 1997.
[15] P. Ge and M. Jouaneh, “Tracking control of a piezoceramic actuator,” IEEE transactions on control systems technology, vol. 4, no. 3, 1996.
[16] Y. Stepanenko and C. Y. Su, “Intelligent control of piezoelectric
actuators,” Proc. 37th IEEE Conference on Decision and Control, pp. 4234-4239, 1998,.
[17] J. M. Cruz-Hernandez and V. Hayward, “On the linear compensation of hysteresis,” Proc. 36th IEEE Conference on Decision and Control, pp. 1956-1957, 1997.
[18] S. B. Choi, S. S. Cho and Y. P. Park, “Vibration and position tracking control of piezoceramic-based smart structures via QFT,” Journal of Dynamic System, Measurement, and Control, vol .121, pp. 3052-3058, 1999.
[19] M. Goldfarb and N. Celanovic, ”Modeling piezoelectric stack actuators for control of micromanipulation,” IEEE Contr. Syst. Mag., vol. 17, pp. 69-79, 1997.
[20] M. Goldfarb and N. Celanovic, “Behavioral implications of piezoelectric stack actuators for control of micromanipulation,” Proceedings of the 1996 IEEE International Conference on Robotics and Automation, vol. 1, pp. 226-231, 1996.
[21] H. J. M. T. A. Adriaens, W. L. de Koning and R. Banning, “Modeling piezoelectric actuators,” IEEE/ASME Transactions on Mechatronics, vol. 5, no. 4, pp. 331-341, 2000.
[22] M. Goldfarb and N. Celanovic, “A lumped parameter electromechanical model for describing the nonlinear behavior of piezoelectric actuators,” J. Dynamic Systems, Measurement, and Control, Transactions of the ASME, vol. 119, pp. 478-485, 1997.
[23] G. S. Choi, H. S. Kim and G. H. Choi, “A study on position control of piezeoelectric actuators,” Proceedings of the IEEE International Symposium on Industrial Electronics, vol. 3, pp. 851-855, 1997.
[24] I. Mayergoyz, G. Friedman and C. Sailing, “Comparision of the classical and generalized Perisach hysteresis models with experiments,” IEEE Trans. Magn., vol 25, pp. 3925-3927, 1989.
[25] J. J. Tzen, S. L. Jeng and W. H. Chieng, “Modeling of piezoelectric actuator for compensation and controller design,” Precision Eng., vol. 27, pp. 70-86, 2003.
[26] R. Ben Mrad and H. Hu, “A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic voltage excitations,” IEEE/ASME Transactions on Mechatronics, vol. 7, no. 4, pp. 479-489, 2002.
[27] H. Janocha and K. Kuhnen, “Real-time compensation of hysteresis and creep in piezoelectric actuators,” Sensors and Actuators A: Physical, vol. 79, pp. 83-89, 2000.
[28] 池田拓郎/陳世春,「基本壓電材料學」,復漢,1985。
[29]
施文凱,「應用基因-模糊控制於氣壓-壓電精密定位伺服系統之研究」,國立台灣科技大學工程技術所自動化及控制學程碩士論文,2001。
[30] J. van Randeraat and R. E. Setterington, “Piezoelectric Ceramics,” Mullard Limited, 1974.
[31] 馮榮豐,「奈微米工程-精密製程與量測技術」,滄海書局,2002。
[32] 吳朗,「電子陶瓷-壓電」,全欣科技,1994。
[33] 許溢适,「壓電/電歪致動器」,文笙書局股份有限公司,1996。
[34] 許溢适,「壓電陶瓷新技術」,文笙書局股份有限公司,1994。
[35] D. C. Karnopp, D. L. Margolis and R. C. Rosenberg, “System Dynamics: A Unified Approach,” Wiley, 1990.
[36] 吳亭穎,「麥斯威爾磁滯模型鑑別之改善策略」,國立清華大學動力機械系碩士論文,2003。
[37] S. Sastry and M. Bodson, “Adaptive Control:Stability, Convergence, and Robustness,” Prentice-Hall, 1989.
[38] G. Tao and P. V. Kokotovic, “Adaptive Control of System with Actuator and Sensor Nonlinearities,” Wiley, 1996.
[39] 吳見明,彭國勝,劉惠中,陳朝榮,「單體撓性微動塊性能測試」,量測中心技術資料,2003。
[40] A. H. Slocum, “Precision Machine Design,” Prentice-Hall, 1992.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔