|
[1] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, volume 7, page 48~50, 1956. [2] R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal, volume 36, page 1389~1401, 1957. [3] R. L. Graham and Pavol Hell. On the history of the minimum spanning tree problem. Annals of the History of Computing, volume 7(1), page 43~57, 1985. [4] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, volume 1, page 269~271, 1959. [5] B. Y. Wu. A polynomial time approximation scheme for the two-source minimum routing cost spanning trees. Journal of Algorithms, volume 44(2), page 359~378, 2002. [6] D. S. Johnson, J. K. Lenstra, and A. H. G. Rinnooy Kan. The complexity of the network design problem. Networks, volume 8, page 279~285, 1978. [7] B. Y. Wu, G. Lancia, V. Bafna, K. M. Chao, R. Ravi, and C. Y. Tang. A polynomial time approximation scheme for minimum routing cost spanning trees. SIAM Journal on Computing, volume 29(3), page 761-778, 1999. [8] B. Y. Wu, K. M. Chao, and C. Y. Tang. Approximation algorithms for some optimum communication spanning tree problems. Discrete Applied Mathematics, volume 102, page 245—266, 2000. [9] S. Khuller, B. Raghavachari, and N. Young. Balancing minimum spanning trees and shortest-path trees. Algorithmica, volume 14, page 305~321, 1995. [10] B. Y. Wu, K. M. Chao, and C. Y. Tang. Light Graphs with Small Routing Cost. Networks, volume 39(3), page 130~138, 2002.
|