跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 01:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李海明
研究生(外文):Hai-Ming Lee
論文名稱:具奈米閘極氧化層之電晶體可靠度研究
論文名稱(外文):Functional Reliability Study of MOS Transistors with Nano-Scale Gate Oxides
指導教授:徐清祥徐清祥引用關係金雅琴
指導教授(外文):Charles Ching-Hsiang HsuYa-Chin King
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:91
語文別:英文
論文頁數:147
中文關鍵詞:金氧半電晶體可靠度氧化層奈米超薄
外文關鍵詞:MOSFETreliabilityoxidenano-scaleultra-thin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:431
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在這篇論文中,我們詳細地分析了閘極氧化層厚度介於三點三奈米以及一點二奈米之間的金氧半電晶體其操作可靠度。由於厚度超過五奈米之閘極氧化層其硬崩潰現象會直接導致電晶體操作特性的破壞,電晶體的可靠度一直以來被視同氧化層可靠度,且大部分的電晶體可靠度研究多藉由氧化層可靠度研究來達成。然而,當氧化層厚度薄至三奈米以下後,將氧化層可靠度同等為電晶體可靠度的作法卻面臨質疑。為了針對電晶體之可靠度進行研究,我們檢視了各種造成金氧半電晶體操作特性衰退的物理機制,並且選定了幾個主要且具代表性的元件特性參數作為評斷其正常操作的標準。在幾個具代表性的元件特性參數中,我們發現電晶體開啟時的汲極導通電流衰退與電晶體關閉時的汲極漏電流增加是影響具有奈米閘極氧化層電晶體操作可靠度最鉅的兩個因素。尤其當氧化層厚度薄至三奈米以下時,在閘極和汲極之間所發生的氧化層軟崩潰現象不只影響了電晶體關閉狀態下的操作特性,其所造成的閘極漏電流更遠超過一般所能容忍的電晶體正常操作定義。因此,藉由相關於這兩個主要元件特性參數-電晶體開啟時的汲極導通電流與電晶體關閉時的汲極漏電流-的實驗數據分析以及理論計算,我們提出一套針對電晶體操作可靠度的系統化分析模式,並建立起一個整合的電晶體操作可靠度模型。對於即將趨近一奈米的半導體科技而言,相信我們所提出的分析模式以及整合可靠度模型會有些許的幫助。
In this study, functional reliability of MOS transistors with oxide thickness ranging from 3.3 nm down to 1.2 nm is investigated in detail. In contrast with most reliability tests which focus on oxide reliability, various mechanisms resulting in transistor performance degradation are examined, while the on-state drain conduction current and off-state drain leakage current are the two most decisive device parameters that dominates MOS transistor functional reliability in the ultra-thin oxide regime. The degradation of off-state drain leakage current is caused by lately observed oxide soft-breakdown within the gate-to-drain overlap area, and its dominance tends to grow with scaling oxide thickness. Through experimental data analyses and theoretical calculations, we verified the dependences of device lifetime on oxide electric field, failure rate and device dimension. On the basis of physical mechanisms and models, we propose a methodology for MOS transistor functional reliability evaluation and a correlated unified functional reliability model which may contribute to the microelectronics technology development in the near future.
Abstract
List of Contents
List of Figures
List of Tables
Chapter One Introduction
Chapter Two Review of Ultra-thin Oxide Reliability
2.0 Introduction
2.1 Fundamental ultra-thin oxide characteristics
2.1.1 Current-voltage characteristics
2.1.2 Breakdown characteristics
2.2 Reliability evaluation of ultra-thin oxide
2.2.1 Definition of oxide failure
2.2.2 Stress methods
2.2.3 Reliability projection procedure
2.3 Physical and predictive models of oxide reliability
2.3.1 Anode-hole injection model
2.3.2 Thermochemical model
2.4 Oxide reliability and MOS transistor functional reliability
Chapter Three Experimental
3.0 Introduction
3.1 Device structure and oxide film preparation
3.2 Experimental setup
3.2.1 Stress condition setup
3.2.2 Measurement setup
3.3 Characterization techniques
3.3.1 Fundamental device characteristics extraction
3.3.2 Device lifetime extraction
3.3.3 Quantum effects and poly depletion
Chapter Four Fundamental I-V Characteristics of MOS Devices
4.0 Introduction
4.1 Fundamental I-V characteristics of MOS capacitors
4.2 Fundamental I-V characteristics of MOS transistors
4.2.1 Common I-V characteristics
4.2.2 Low-drain I-V characteristics
4.2.3 High-drain I-V characteristics
4.3 Other I-V characteristics of MOS transistors
4.3.1 Channel hot electron injection
4.3.2 Band-to-band tunneling induced gate current
Chapter Five MOS Transistor Functional Reliability
5.0 Introduction
5.1 Qualitative description of MOS transistor performance degradation
5.1.1 Fundamental I-V measurement
5.1.2 I-V characteristics degradation
5.2 Quantitative evaluation of MOS transistor functional reliability
5.2.1 Representative device parameter and relative criterion
5.2.2 Device parameter degradation
5.3 Lifetime extraction and projection
Chapter Six Establishment of The Unified MOS Transistor Functional Reliability Model
6.0 Introduction
6.1 Essentials of a reliability model
6.2 Reliability Physics: linear-E model? 1/E model?
6.2.1 Theoretical calculation of the linear-E and the 1/E models
6.2.2 Experimental data analysis of the linear-E and the 1/E models
6.3 Reliability statistics
6.3.1 Weibull distribution function
6.3.2 Weibull plot and Weibull slope extraction
6.4 The unified MOS transistor functional reliability model
Chapter Seven Conclusion
References
Vita
[1.1] R. H. Dennard, F. H. Gaensslen, H. -N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, "Design of ion-implanted MOSFETs with very small physical dimensions," IEEE J. Solid State Circuits, vol. SC-9, pp. 256-268, 1974.
[1.2] N. Klein, "The mechanism of self-healing electrical breakdown in MOS structures," IEEE Trans. Electron Devices, vol. 13, pp. 788-805, 1966.
[1.3] P. Solomon, "Breakdown in silicon oxide - A review," J. Vac. Sci. Technol., vol. 14, pp. 1122-1130, 1977.
[1.4] E. Harari, "Dielectric breakdown in electrically stressed thin films of thermal SiO2," J. Appl. Phys., vol. 49, pp. 2478-2489, 1978.
[1.5] E. Rosenbaum, J. C. King, and C. Hu, "Accelerated testing of SiO2 reliability," IEEE Trans. Electron Devices, vol. 43, pp. 70-80, 1996.
[1.6] A. Martin, P. O''Sullivan, and A. Mathewson, "Dielectric reliability measurement methods: a review," Microelectron. Reliab., vol. 38, pp. 37-72, 1998.
[1.7] K. Okada, S. Kawasaki, and Y. Hirofuji, "New experimental findings on stress induced leakage current of ultra thin silicon dioxides," Extended Abstracts of the1994 International Conference on Solid State Devices and Materials, pp. 565-567, 1994.
[1.8] S. -H. Lee, B. -J. Cho, J. -C. Kim, and S. -H. Choi, "Quasibreakdown of ultrathin gate oxide under high field stress," Digest of the 1994 International Electron Devices Meeting, pp. 605-607, 1994.
[1.9] M. Depas, T. Nigam, and M. M. Heyns, "Soft breakdown of ultra-thin gate oxide layers," IEEE Trans. Electron Devices, vol. 43, pp. 2499-1504, 1996.
[1.10] B. E. Weir, P. J. Silverman, D. Monroe, K. S. Krisch, M. A. Alam, G. B. Alers, T. W. Sorsch, G. L. Timp, F. Baumann, C. T. Liu, Y. Ma, and D. Huang, "Ultra-thin gate dielectrics: They break down, but do they fail?," Digest of the 1997 International Electron Devices Meeting, pp. 73-76, 1997.
[1.11] K. Okada, H. Kubo, A. Ishinaga, and K. Yoneda, "A concept of gate oxide lifetime limited by ''B-mode'' stress induced leakage currents in direct tunneling regime," Digest of the 1999 Symposium on VLSI Technology, pp. 57-58, 1999.
[1.12] K. Okada, "The gate oxide lifetime limited by ''B-mode'' stress induced leakage current and the scaling limit of silicon dioxides in the direct tunneling regime," Semicond. Sci. Technol., vol. 15, pp. 478-484, 2000.
[1.13] R. Degraeve, G. Groeseneken, R. Bellens, M. Depas, and H. E. Maes, "A consistent model for the thickness dependence of intrinsic breakdown in ultra-thin oxides," Digest of the 1995 International Electron Devices Meeting, p. 863-866, 1995.
[1.14] J. H. Stathis and D. J. DiMaria, "Reliability projection for ultra-thin oxides at low voltage," Digest of the 1998 International Electron Devices Meeting, pp. 167-170, 1998.
[1.15] D. J. DiMaria, E. Cartier, and D. Arnold, "Impact ionization, trap creation, degradation, and breakdown in silicon dioxide films on silicon," J. Appl. Phys., vol. 73, pp. 3367-3384, 1993.
[1.16] J. W. McPherson and H. C. Mogul, "Underlying physics of the thermochemical E model in describing low-field time-dependent breakdown in SiO2 thin films," J. Appl. Phys., vol. 84, pp. 1513-1523, 1998.
[1.17] K. P. Cheung, "A physics-based unified gate-oxide breakdown model," Digest of the 1999 International Electron Devices Meeting, pp. 719-722, 1999.
[1.18] C. Hu and Q. Lu, "A unified gate oxide reliability model," 1999 International Reliability Physics Symposium Proceedings, pp. 47-51, 1999.
[1.19] K. Okada and K. Yoneda, "A consistent model for time dependent dielectric breakdown in ultrathin silicon dioxides," Digest of the 1999 International Electron Devices Meeting, pp. 445-447, 1999.
[2.1] S. Lombardo, A. La Magna, C. Spinella, C. Gerardi, and F. Crupi, "Degradation and hard breakdown transient of thin gate oxides in metal-SiO2-Si capacitors: Dependence on oxide thickness," J. Appl. Phys., vol. 86, pp. 6382-6391, 1999.
[2.2] J. C. Jackson, T. Robinson, O. Oralkan, D. J. Dumin, and G. A. Brown, "Nonuniqueness of time-dependent-dielectric-breakdown distributions," Appl. Phys. Lett., vol. 71, pp. 3682-3684, 1997.
[2.3] J. Suñé and E. Miranda, "Soft and hard breakdown of ultrathin SiO2 gate oxides," in The Physics and Chemistry of SiO2 and the Si-SiO2 Interface - 4, vol. 2000-2, H. Z. Massoud, I. J. R. Baumvol, M. Hirose, and E. H. Poindexter, Eds. Pennington, NJ: The Electrochemical Society, 2000, pp. 333-344.
[2.4] K. Okada, S. Kawasaki, and Y. Hirofuji, "New experimental findings on stress induced leakage current of ultra thin silicon dioxides," Extended Abstracts of the1994 International Conference on Solid State Devices and Materials, pp. 565-567, 1994.
[2.5] S. -H. Lee, B. -J. Cho, J.-C. Kim, and S. -H. Choi, "Quasibreakdown of ultrathin gate oxide under high field stress," Digest of the 1994 International Electron Devices Meeting, pp. 605-607, 1994.
[2.6] M. Depas, T. Nigam, and M. M. Heyns, "Soft breakdown of ultra-thin gate oxide layers," IEEE Trans. Electron Devices, vol. 43, pp. 2499-1504, 1996.
[2.7] M. Houssa, T. Nigam, P. W. Mertens, and M. M. Heyns, "Soft breakdown in ultrathin gate oxides: Correlation with the percolation theory of nonlinear conductors," Appl. Phys. Lett., vol. 73, pp. 514-516, 1998.
[2.8] E. Miranda, J. Suñé, R. Rodríguez, M. Nafría, and X. Aymerich, "A function-fit model for the soft breakdown failure mode," IEEE Electron Device Lett., vol. 20, pp. 265-267, 1999.
[2.9] J. Suñé and E. Miranda, "Post soft breakdown conduction in SiO2 gate oxides," Digest of the 2000 International Electron Devices Meeting, pp. 533-536, 2000.
[2.10] J. Suñé, E. Miranda, M. Nafría, and X. Aymerich, "Modeling the breakdown spots in silicon dioxide films as point contacts," Appl. Phys. Lett., vol. 75, pp. 959-961, 1999.
[2.11] E. Miranda, J. Suñé, R. Rodríguez, M. Nafría, X. Aymerich, L. Fonseca, and F. Campabadal, "Soft breakdown in ultrathin (3-5 nm) gate dielectrics," IEEE Trans. Electron Devices, vol. 47, pp. 82-89, 2000.
[2.12] K. Okada, "Extended time dependent dielectric breakdown model based on anomalous gate area dependence of lifetime in ultra thin silicon dioxides," Jpn. J. Appl. Phys., vol. 36, pp. 1443-1447, 1997.
[2.13] J. Suñé, G. Mura, and E. Miranda, "Are soft breakdown and hard breakdown of ultrathin gate oxides actually different failure mechanisms?," IEEE Electron Device Lett., vol. 21, pp. 167-169, 2000.
[2.14] E. Wu, E. Nowak, J. Aitken, W. Abadeer, L. K. Han, and S. H. Lo, "Structural dependence of dielectric breakdown in ultrathin gate oxides and its relationship to soft breakdown modes and device failure," Digest of the 1998 International Electron Devices Meeting, pp. 187-190, 1998.
[2.15] J. S. Suehle, E. M. Vogel, B. Wang, and J. B. Bernstein, "Temperature dependence of soft breakdown and wear-out in sub-3 nm SiO2 films," 2000 International Reliability Physics Symposium Proceedings, pp. 33-39, 2000.
[2.16] T. Nigam, R. Degraeve, G. Groeseneken, M. M. Heyns, and H. E. Maes, "A fast and simple methodology for lifetime projection of ultra-thin oxides," 1999 International Reliability Physics Symposium Proceedings, pp. 381-388, 1999.
[2.17] D. J. DiMaria, E. Cartier, and D. Arnold, "Dependence on gate work function of oxide charging, defect generation, and hole currents in metal-oxide- semiconductor structures," J. Appl. Phys., vol. 81, pp. 3220-3226, 1997.
[2.18] T. Nigam, R. Degraeve, G. Groeseneken, M. M. Heyns, and H. E. Maes, "Constant current charge-to-breakdown: still a valid tool to study the reliability of MOS structure?," 1998 International Reliability Physics Symposium Proceedings, pp. 62-69, 1998
[2.19] D. J. DiMaria, "Defect generation in ultrathin silicon dioxide films produced by anode hole injection," Appl. Phys. Lett., vol. 77, pp. 2716-2718, 2000.
[2.20] E. Y. Wu, W. W. Abadeer, L. -K. Han, S. -H. Lo, and G. Hueckel, "Challenges for accurate reliability projections in the ultra-thin oxide regime," 1999 International Reliability Physics Symposium Proceedings, pp. 57-65, 1999.
[2.21] R. P. Vollertsen and W. W. Abadeer, "Modeling considerations and development of upper limits of stress conditions for dielectric breakdown projections," Microelectron. Reliab., vol. 36, pp. 1019-1031, 1996
[2.22] Y. Chen, J. Suehle, C. C. Shen, J. Bernstein, C. Messick, and P. Chaparala, "The correlation of highly accelerated QBD tests to TDDB file tests for ultra-thin gate oxides, " 1998 International Reliability Physics Symposium Proceedings, pp. 87-91, 1998.
[2.23] J. H. Stathis and D. J. DiMaria, "Reliability projection for ultra-thin oxides at low voltage," Digest of the 1998 International Electron Devices Meeting, pp. 167-170, 1998.
[2.24] R. Degraeve, G. Groeseneken, R. Bellens, M. Depas, and H. E. Maes, "A consistent model for the thickness dependence of intrinsic breakdown in ultra-thin oxides," Digest of the 1995 International Electron Devices Meeting, pp. 863-866, 1995.
[2.25] D. J. DiMaria and J. H. Stathis, "Explanation for the oxide thickness dependence of breakdown characteristics of metaloxide-semiconductor structures," Appl. Phys. Lett., vol. 70, pp. 2708-2710, 1997.
[2.26] J. H. Stathis, "Percolation models for gate oxide breakdown," J. Appl. Phys., vol. 86, pp. 5757-5766, 1999.
[2.27] D. J. DiMaria, E. Cartier, and D. Arnold, "Impact ionization, trap creation, degradation, and breakdown in silicon dioxide films on silicon," J. Appl. Phys., vol. 73, pp. 3367-3384, 1993.
[2.28] J. W. McPherson and H. C. Mogul, "Underlying physics of the thermochemical E model in describing low-field time-dependent breakdown in SiO2 thin films," J. Appl. Phys., vol. 84, pp. 1513-1523, 1998.
[2.29] J. D. Bude, B. E. Weir, and P. J. Silverman, "Explanation of stress-induced damage in thin oxides," Digest of the 1998 International Electron Devices Meeting, pp. 179-182, 1998.
[2.30] I. C. Chen, S. E. Holland, K. K. Young, C. Chang, and C. Hu, "Substrate hole current and oxide breakdown," Appl. Phys. Lett., vol. 49, pp. 669-671, 1986.
[2.31] C. Schuegraf and C. Hu, "Metal-oxide semiconductor field-effect-transistor substrate current during Fowler-Nordheim tunneling stress and silicon dioxide reliability," J. Appl. Phys., vol. 76, pp. 3695-3700, 1994.
[2.32] J. -H. Kim, J. J. Sanchez, T. A. DeMassa, M. T. Quddus, D. Smith, F. Shaapur, K. Weiss, and C. H. Liu, "Surface plasmons and breakdown in thin silicon dioxide films on silicon," J. Appl. Phys., vol. 84, pp. 1430-1438, 1998.
[2.33] X. Gao and S. S. Yee, "Threshold energies of high-field-induced hole currents and positive charges in SiO2 layers of metal-oxide-semiconductor structures," J. Appl. Phys., vol. 76, pp. 5795-5799, 1994.
[2.34] D. J. DiMaria, E. Cartier, and D. A. Buchanan, "Anode hole injection and trapping in silicon dioxide," J. Appl. Phys., vol. 80, pp. 304-317, 1996.
[2.35] M. A. Alam, J. D. Bude, and A. Ghetti, "Field acceleration for oxide breakdown - Can an accurate anode hole injection model resolve the E vs. 1/E controversy?," 2000 International Reliability Physics Symposium Proceedings, pp. 21-26, 2000.
[2.36] J. W. McPherson, R. B. Khamankar, and A. Shanware, "A complementary molecular-model (including field and current) for TDDB in SiO2 dielectrics," Microelectron. Reliab., vol. 40, pp. 1591-1597, 2000.
[2.37] R. Moazzami, J. Lee, and C. Hu, "Temperature acceleration of time-dependent dielectric breakdown," IEEE Trans. Electron Devices, vol. 36, pp. 2462-2465, 1989.
[2.38] G. A. Swartz, "Gate oxide integrity of NMOS transistor arrays," IEEE Trans. Electron Devices, vol. 33, pp. 1826-1829, 1986.
[2.39] E. Vincent, N. Revil, C. Papadas, and G. Ghibaudo, "Electric field dependence of TDDB activation energy in ultrathin oxides," Microelectron. Reliab., vol. 36, pp. 1643-1646, 1996.
[2.40] J. S. Suehle, P. Chaparala, C. Messick, W. M. Miller, and K. C. Boyko, "Field and temperature acceleration of time-dependent dielectric breakdown in intrinsic thin SiO2," 1994 International Reliability Physics Symposium Proceedings, pp. 120-125, 1994.
[2.41] D. J. Dumin, S. K. Mopuri, S. Vanchinathan, R. S. Scott, R. Subramoniam, and T. G. Lewis, "High field related thin oxide wearout and breakdown," IEEE Trans. Electron Devices, vol. 42, pp. 760-772, 1995.
[2.42] M. Kimura, "Field and temperature acceleration model for time-dependent dielectric breakdown," IEEE Trans. Electron Devices, vol. 46, pp. 220-229, 1999.
[2.43] J. McPherson, V. Reddy, K. Banerjee, and H. Le, "Comparison of E and 1/E TDDB models for SiO2 under long-term/low-field test conditions," Digest of the 1998 International Electron Devices Meeting, pp. 171-174, 1998.
[2.44] B. E. Weir, P. J. Silverman, D. Monroe, K. S. Krisch, M. A. Alam, G. B. Alers, T. W. Sorsch, G. L. Timp, F. Baumann, C. T. Liu, Y. Ma, and D. Huang, "Ultra-thin gate dielectrics: They break down, but do they fail?," Digest of the 1997 International Electron Devices Meeting, pp. 73-76, 1997.
[2.45] B. E. Weir, P. J. Silverman, M. A. Alam, F. Baumann, D. Monroe, A. Ghetti, J. D. Bude, G. L. Timp, A. Hamad, T. M. Oberdick, N. X. Zhao, Y. Ma, M. M. Brown, D. Hwang, T. Sorsch, and J. Madic, "Gate oxides in 50nm devices: Thickness uniformity improves projected reliability," Digest of the 1999International Electron Devices Meeting, pp. 437-440, 1999.
[2.46] T. Pompl, H. Wurzer, M. Kerber, R. C. W. Wilkins, and I. Eisele, "Influence of soft breakdown on NMOSFET device characteristics," 1999 International Reliability Physics Symposium Proceedings, pp. 82-87, 1999.
[2.47] W. K. Henson, N. Yang, and J. J. Wortmann, "Observation of oxide breakdown and its effects on the characteristics of ultrathin oxide nMOSFETs," IEEE Electron Device Lett., vol. 20, pp. 605-607, 1999.
[3.1] J. Y. -C. Sun, M. R. Wordeman, and S. E. Laux, "On the accuracy of channel length characterization of LDD MOSFET’s," IEEE Trans. Electron Devices, vol. 33, pp. 1556-1562, 1986.
[3.2] S. C. Sun and J. D. Plummer, "Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces," IEEE Trans. Electron Devices, vol. 27, pp. 1497-1508, 1980.
[3.3] R. V. Booth, M. H. White, H. S. Wong, and T. J. Krutsick, "The effect of channel implants on MOS transistor characterization," IEEE Trans. Electron Devices, vol. 34, pp. 2501-2509, 1987
[3.4] E. Wu, S. H. Lo, et al, "Determination of ultra-thin oxide voltages and thickness and the impact on reliability projection," 1997 Reliability Physics Symposium Proceedings, pp. 184-189, 1997.
[3.5] W. Hunter, "The analysis of oxide reliability data," 1998 International Integrated Reliability Workshop Final Report, pp. 114-134, 1998.
[3.6] S. H. Lo, D. A. Buchanan, U. Taur and W. Wang, "Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s," IEEE Electron Device Lett., vol. 18, pp. 209-211, 1997.
[4.1] W. C. Lee, T. -J. King, and C. Hu, "Evidence of hole direct tunneling through ultrathin gate oxide using P+ poly-SiGe gate," IEEE Electron Device Lett., vol. 20, pp. 268-270, 1999
[4.2] Y. Shi, T. P. Ma, S. Prasad, and S. Dhanda, "Polarity dependent tunneling current and oxide breakdown in dual-gate CMOSFETs," IEEE Electron Device Lett., vol. 19, pp. 391-393, 1998.
[4.3] C. Hu, "Lucky-electron model of hot-electron emission," Digest of the 1979 International Electron Devices Meeting, pp. 22-25, 1979.
[4.4] S. Tam, P. -K. Ko and C. Hu, "Lucky-electron model of channel hot electron injection in MOSFET’s," IEEE Trnas. Electron Devices, vol. 31, pp. 1116-1125, 1984.
[4.5] J. Chen, T. Y. Chan, I. C. Chen, P. K. Ko and C. Hu, "Subbreakdown drain leakage current in MOSFET," IEEE Electron Device Lett., vol. 8, no. 11, pp. 515-517, 1987.
[4.6] I. -C. Chen, D. J. Coleman, and C. W. Teng, "Gate current injection initiated by electron band-to-band tunneling in MOS devices," IEEE Electron Device Lett., vol. 10, no. 7, pp. 297-300, 1989.
[4.7] M. -J. Chen, K. -C. Chao and C. -H. Chen, "New observation and the modeling of gate and drain currents in off-state PMOSFET’s," IEEE Trans. Electron Devices, vol. 41, pp.734-736, 1994.
[4.8] H. -M. Lee, C. -J. Liu, C. -W. Hsu, M. -S. Liang, Y. -C. King and C. C. -H. Hsu, "New trap-assisted band-to-band tunneling induced gate current model for P-channel metal-oxide-semiconductor field effect transistors with sub-3 nm oxides," Jpn. J. Appl. Phys., vol.40, pp. 1218-1221, 2001.
[5.1] B. Ricco, G. Gozzi, and M. Lanzoni, "Modeling and simulation of stress-induced leakage current in ultrathin SiO2 films," IEEE Trans. Electron Devices, vol. 45, no. 7, pp. 1554-1560, 1998.
[5.2] S. -I. Takagi, N. Yasuda, and A. Toriumi, "Experimental evidence of inelastic tunneling and new I-V model for stress-induced leakage current," Digest of the 1996 International Electron Devices Meeting, pp. 323-326, 1996.
[5.3] Y. Shi, T. P. Ma, and S. Prasad, "Polarity dependent gate tunneling currents in dual-gate CMOSFET’s, " IEEE Trans. Electron Devices, vol. 45, pp. 2355-2360, 1998.
[5.4] J. Suñé and E. Miranda, "Post soft breakdown conduction in SiO2 gate oxides," Digest of the 2000 International Electron Devices Meeting, pp. 533-536, 2000.
[5.5] H. Satake and A. Toriumi, "Dielectric breakdown mechanism of thin-SiO2 studied by the post-breakdown resistance statistics," IEEE Trans. Electron Devices, vol. 47, pp. 741-745, 2000.
[5.6] C. Hu and Q. Lu, "A unified gate oxide reliability model," 1999 International Reliability Physics Symposium Proceedings, pp. 47-51, 1999.
[5.7] E. Y. Wu, W. W. Abadeer, L. -K. Han, S. -H. Lo, and G. Hueckel, "Challenges for accurate reliability projections in the ultra-thin oxide regime," 1999 International Reliability Physics Symposium Proceedings, pp. 57-65, 1999.
[5.8] T. Nigam, R. Degraeve, G. Groeseneken, M. M. Heyns, and H. E. Maes, "A fast and simple methodology for lifetime projection of ultra-thin oxides," 1999 International Reliability Physics Symposium Proceedings, pp. 381-388, 1999.
[6.1] J. W. McPherson and R. B. Khamankar, "Molecular model for intrinsic time-dependent dielectric breakdown in SiO2 dielectrics and the reliability implications for hyper-thin gate oxide," Semicond. Sci. Technol., vol. 15, pp. 462-470, 2000.
[6.2] J. W. McPherson and H. C. Mogul, "Underlying physics of the thermochemical E model in describing low-field time-dependent breakdown in SiO2 thin films," J. Appl. Phys., vol. 84, pp. 1513-1523, 1998.
[6.3] R. Moazzami, J. Lee, and C. Hu, "Temperature acceleration of time-dependent dielectric breakdown," IEEE Trans. Electron Devices, vol. 36, pp. 2462-2465, 1989.
[6.4] M. Kimura, "Oxide breakdown mechanism and quantum physical chemistry for time-dependent dielectric breakdown," 1997 International Reliability Physics Symposium Proceedings, pp. 190-200, 1997.
[6.5] D. J. DiMaria and J. W. Stasiak, "Trap creation in silicon dioxide produced by hot electrons," J. Appl. Phys., vol. 65, pp. 2342-2356, 1989.
[6.6] S. H. Lo, D. A. Buchanan, U. Taur and W. Wang, "Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s," IEEE Electron Device Lett., vol. 18, pp. 209-211, 1997.
[6.7] C. Hu and Q. Lu, "A unified gate oxide reliability model," 1999 International Reliability Physics Symposium Proceedings, pp. 47-51, 1999.
[6.8] T. Nigam, R. Degraeve, G. Groeseneken, M. M. Heyns, and H. E. Maes, "A fast and simple methodology for lifetime projection of ultra-thin oxides," 1999 International Reliability Physics Symposium Proceedings, pp. 381-388, 1999.
[6.9] E. Y. Wu, W. W. Abadeer, L. -K. Han, S. -H. Lo, and G. Hueckel, "Challenges for accurate reliability projections in the ultra-thin oxide regime," 1999 International Reliability Physics Symposium Proceedings, pp. 57-65, 1999.
[6.10] W. J. Bertram, "Yield and reliability," in VLSI Technology second edition, S. M. Sze, Ed. New York, N. Y.: McGraw-Hill, 1988, pp.612-655.
[6.11] J. H. Stathis and D. J. DiMaria, "Reliability projection for ultra-thin oxides at low voltage," Digest of the 1998 International Electron Devices Meeting, pp. 167-170, 1998.
[6.12] R. Degraeve, G. Groeseneken, R. Bellens, M. Depas, and H. E. Maes, "A consistent model for the thickness dependence of intrinsic breakdown in ultra-thin oxides," Digest of the 1995 International Electron Devices Meeting, p. 863-866, 1995.
[6.13] C. -T. Sah, "Origin of interface states and oxide charges generated by ionizing radiation," IEEE Trans. Nuclear Science, vol. 23, pp. 1563-1568, 1976.
[6.14] J. T. Duane, "Learning curve approach to reliability monitoring," IEEE Trans. Aerosp., vol. 2, pp. 563, 1964.
[6.15] J. H. Stathis, "Percolation models for gate oxide breakdown," J. Appl. Phys., vol. 86, pp. 5757-5766, 1999.
[6.16] T. Nigam, R. Degraeve, G. Groeseneken, M. M. Heyns, and H. E. Maes, "A fast and simple methodology for lifetime projection of ultra-thin oxides," 1999 International Reliability Physics Symposium Proceedings, pp. 381-388, 1999.
[6.17] J. G. J. Chern, P. Chang, R. F. Motta, and N. Godinho, "A new method to determine MOSFET channel length," IEEE Electron Device Lett., vol. 1, pp. 170-173, 1980.
[6.18] K. Tereda, and H. Muta, "A New method to determine effective MOSFET channel length," Jpn. J. Appl. Phys., vol. 18, pp. 953-959, 1979.
[6.19] J. H. Stathis, "Physical and predictive models of ultra thin oxide reliability in CMOS devices and circuits," 2001 International Reliability Physics Symposium Proceedings, pp. 132-149, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊