|
[1] M.T. Camargo silva, J.P. Sih, T.M. Chou, J.K. Kirk, G.A. Evans, and J.K. Butler, “ ‘1.3 μm strained MQW AlGaInAs and InGaAsP ridge-waveguide lasers a comparative study”, SBMO/IEEE MTT-S IMOC'99 Proceedings, pp. 10-12, 1999. [2] H. Wada, K. Takemasa, T. Munakata, M. Kobayashi, and T. Kamijoh, “Effect of well number on temperature characteristics in 1.3-μm AlGaInAs-InP Quantum-well lasers”, IEEE J. Selected Topics in Quantum Electron., vol. 5, pp. 420-427, 1999. [3] C. E. Zah, R. B. Bhat, B. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. C. Flanders, and J. J. Hsieh, “High performance uncooled 1.3 μm AlxGayIn1-x-yAs/InP strained-layer quantum well lasers for subscriber loop application”, IEEE J. Quantum Electron., vol. 30, No.2, pp. 511-523, 1994. [4] S. J. Sweeney, T. Higashi, A.R. Adams T. Uchida, and T. Fujii, “Improved temperature dependence 1.3 μm AlGaInAs-based MQW semiconduct diode lasers revealed by hydrostatic pressure”, Electron. Lett. vol. 29, pp.2130-2132, 1998. [5] J. W. Pan and J. I. Chyi, “Theoretical study of the temperature dependence of 1.3- μm AlGaInAs-InP multiple-quantum —well lasers”, IEEE J. Quantum Electron. vol. 32, pp. 2133-2138, 1996. [6] T. Higashi, T. Yamamoto, S. Ogita, and M. Kobayashi, “Experimental analysis of characteristic temperature in quantum well semiconductor lasers”, IEEE J. select. Topics. Quantum. Electron., vol. 3, pp. 513-521, 1997. [7] N. Yamamoto, S. Seki, Y. Noguchi, and S. Kondo, “Design criteria of 1.3-μm multiple-quantum —well lasers for high-temperature operation”, IEEE Photon. Technol. Lett., vol. 12, pp.137-139, 2000. [8] T. Takagi, F. Koyama, and K. Iga, “Design and photoluminescence study on a multiquantum barrier”, IEEE J. Quantum. Electron., vol. 27, pp. 1511-1519, 1991. [9] J. W. Pan, K. G. Chyi, Y. K. Tu, and J. W. Liaw, “Suppression of electron and hole leakage in 1.3 mm AlGaInAs/InP quantum well lasers using multiquantum barrier”, Appl. Phys. Lett., vol. 72, pp. 27-29, 1998. [10] J. W. Pan, M. H. Chen, J. I. Chyi, and T. T. Shih, “Temperature-dependent characteristics of 1.3-mm AlGaInAs-InP lasers with multiquantum barriers at the guiding layers”, IEEE Photon. Technol. Letts., vol. 10, pp. 1700-1702, 1998. [11] N. Ohnoki, G. Okazaki, F. Koyama, and K. Iga, “Record high characteristic temperature (T0 = 122K) of 1.55 mm strain-compensated AlGaInAs/AlGaInAs MQW lasers with AlAs/AlInAs multiquantum barrier”, Electron. Lett., vol. 35, pp. 51-52, 1999. [12] K. Takemasa, T. Munakata, H. Wada, and T. Kamijoh, “1.3 mm AlGaInAs-AlGaInAs strained multiple-quantum-well laser with a p-AlInAs electron stopper layer”, IEEE Photon. Technol. Lett., vol. 10, No.4, pp. 495-497, 1998. [13] K. Uomi, “Modulation-doped multi-quantum well (MD-MQW) lasers, I. theory”, Jpn. J. Appl. Phys., vol. 29, pp. 81-87, 1990. [14] H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara and A. Kasukawa, “Low threshold 1.3 μm InAsP n-type modulation doped MQW lasers grown by gas-source molecular-beam epitaxy”, Electron. Lett., vol. 34, pp. 888-889, 1998. [15] H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, and A. Kasukawa, “1.3 μm InAsP n-type modulation doped MQW lasers grown by gas-source molecular-beam epitaxy”, IEEE J. Selected Topics in Quantum Electron., vol. 5, pp. 449-456, 1999. [16] H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, and A. Kasukawa, “1.3 μm InAsP n-type modulation doped MQW lasers”, IEEE J. Quantum. Electron., vol. 36, No.6, pp. 728-735, 2000. [17] K. Nakahara, K. Uomi, T. Tsuchiya, A. Niwa, T. Haga, and T. Taniwatari, “1.3 μm InGaAsP-InP n-type modulation-doped strained multiquantum-well lasers”, IEEE J. Selected Topics in Quantum Electron., vol. 3, No.2, pp. 166-172, 1997. [18] J. N. Sweetser, T. J. Dunn, L. Waxer, I. A. Walmsley, S. M. Shank, and G. W. Wicks, “Effect of n-type modulation doping of quantum wells on the dynamics of photoluminescence”, Appl. Phys. Lerrs., vol. 63, pp. 3461-3463, 1993. [19] S. R. Chinn, P. S. Zory, and A. R. Reisinger, “A model for GRIN-SCH-SQW diode lasers”, IEEE J. Quantum Electron. Vol.24, pp. 2191-2214, 1988. [20] N. K. Dutta, “Calculated temperature dependence of threshold current of GaAs-AlxGa1-xAs deoble heterostructure lasers”, J. Appl. Phys., vol.52, pp. 70-73, 1981. [21] H. C. Cascy, and M. B. Panish, in Heterostructure lasers, New York: Academic, 1978. [22] J. I. Davies, A. C. Marshall, P. T. Williams, M. D. Scott, A. C. Carter, “AlGaInAs/InP double heterostructure lasers grown by low-pressure metal organic vapour-phase epitaxy for emmision at 1300nm”, Electron. Lett. Vol.24, pp732-733, 1988. [23] A. J. Springthorpe, T. Garanzotis, P. Paddon, G. Pakulski, and K. I. White, “Strained 1.3μm MQW AlGaInAs lasers grown by digital alloy MBE”, Electron. Lett. Vol.36, pp1631-1632, 2000. [24] H. K. Choi, C. A. Wang, D. F. Kolesar, R. L. Aggarwal, and J. N. Walpole, “High-power high-temperature operation of AlInGaAs-AlGaAs strained single-quantum-well diode lasers”, IEEE Photon. Tech. Lett. Vol.3, pp857-859, 1991. [25] C. C. Lin, K. S. Liu, M. C. Wu, and H. P. Shiao, “Low threshold current and high temperature operation of 1.55μm strain-compensated multiple quantum well AiInAs/AlGaInAs laser diodes”, Electron. Lett. Vol.34, 1998. [26] R. F. Kazarinov and G. L. Belenky, “Novel design of AlGaInAs-InP lasers operating at 1.3 mm”, IEEE J. Quantum Electron., vol. 31, No.3, pp. 423-426, 1995. [27] H. Y. Anthony Chung, G. Stareev, J. Joos, J. Maehnss, and K. Ebeling, “Very low threshold current density 1.3μm-InAsP/InGaAsP strained quantum well GRINSCH laser grown by gas source MBE”, 10th Intern. Conf. on Indium Phosphide and Related Materials, pp706-708, 1998. [28] L. A. Coldren and S. W. Corzine, in Diode Laser and Photonic Integrated Circuits, Chap. 2, Wiley, New York (1995). [29] G. P. Agrawal and N. K. Dutta, in Semiconductor Lasers, Chap. 2, Van Nostrand Reinhold, New York (1993). [30] A.Sugimura, “Band-to-band Auger recombination effect on InGaAsP laser threshold”, IEEE J. Quantum Electron., vol. 17, pp. 627-635. 1981. [31] N. K. Dutta, and R. J. Nelson, “Temperature dependence of threshold of InGaAsP/InP double-heterostructure lasers and Auger recombination”, Appl. Phys. Lett. vol. 38, no.3, pp. 407-409. 1981. [32] M. Asada, and Y. Suematsu, “The effect of loss and nonradiative recombination on the temperature dependence of threshold current in 1.5-1.6 μm GaInAsP/InP lasers”, IEEE J. Quantum Electron., vol. 19, pp. 917-923, 1983. [33] Y. Zou, J. S. Osinski, P. Grodzinski, P. D. Dapkus, W. C. Rideout, W. F. Sharfin, and F. D. Crawford, “Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5μm compressively strained semiconductor lasers”, IEEE J. Quantum Electron., vol. 20, pp. 1565-1575, 1993. [34] S. Seki, W. W. Lui, and K. Yokoyama, “Explanation for the temperature insensitivity of the Auger recombination rates in 1.55 μm InP-based strained-layer quantum-well lasers”, Appl. Phys. Lett., vol. 66, pp. 3093-3095, 1995. [35] S. Seki, H. Oohashi, H. Sugiura, T. Hironr, and K. Yokoyama, “ Study on the dominant mechanism for the temperature sensitivity of threshold current in 1.3-μm InP-based strain-layer quantum-well lasers”, IEEE J. Quantum Electron., vol. 32, pp. 1478-1486, 1996. [36] S. J. Sweeney, A. F. Phhillips, A. R. Adams, E. P. O'Reilly, and P. J. A. Thijs, “The effect of temperature dependent process on the performance of 1.5μm compressively strained InGaAs(P) MQW semiconductor diode lasers,” IEEE Phton. Technol. Lett. vol. 10, pp. 1076-1078, 1998. [37] J. Braithwaite, M. Silver, V. A. Wilkinson , E. P. O'Reilly, and A. R. Adams, “Role of radiative and nonradiative process on the temperature sensitivity of strained and unstrained 1.5-μm InGaAs(P) quantum well lasers”, Appl. Phys. Lett., vol. 67, pp. 3546-3548, 1995. [38] S. J. Sweeney, A. F. Phhillips, A. R. Adams, E. P. O'Reilly, M. Silver, and P. J. A. Thijs, ”Transition from radiative to nonradiative recombinationin 1.3- and 1.5μm InGaAs(P) multiple quantum well semiconductor diode lasers”, in Proc. CLEO'98, CWN 4, pp. 304, 1998. [39] T. Higashi, J. Sweeney, A.F. Phillips, A.R. Adams, E.P. O’reilly, T. Uchida, and T. Fujii, “Experimental analysis of temperature dependence in 1.3 μm AlGaInAs-InP strained MQW lasers”, IEEE J. of Selected Topics in Quantum. Electron.,vol. 3, pp. 413-419, 1999. [40] A. Furuya, and H. Tanaka, “Superposed multiquantum barriers for InGaAlP heterojunctions”, vol. 28, pp. 1977-1982, 1992. [41] M. Irikawa, H. Shimizu, T. Fukushima, K. Nishikata, and Y. Hirayama, “Strained GaInAs-AlGaInAs 1.5-μm -wavelength multiquantum-well lasers loaded with GaInAs-AlInAs multiquantum barriers at the p-side optical confinement layer”, IEEE J. Selected Topics in Quantum Electron.,vol. 1, pp. 285-292, 1995. [42] A. P. Morrison, J. D. Lambkin, C. J. van der Poel, and A. Valster, “Evaluation of multiquantum barriers in bulk double heterostructure visible laser diode”, IEEE Photo. Tech. Lett., vol. 8, pp. 849-851, 1996. [43] S. J. Chang, Y. K. Su, J. F. Chen, and B.R. Huang, “Effects of electron effective mass on the multiquantum barrier structure in AlGaInP laser diode”, IEE Proc.-Optoelectron, vol. 1, pp. 117-120, 2001. [44] M. Ahmed, M. Yamada, “Influence of instantaneous mode competition on the dynamics of semiconductor lasers”, IEEE J. Quantum electronics, vol. 38, pp. 682-693, 2002. [45] D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 mm room-temperature GaAs-based quantum-dot laser”, Appl. Phys. Lett., vol. 73, pp. 2564-2566, 1998. [46] G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low threshold oxide-confined 1.3 mm quantum dot laser:, IEEE Photon. Technol. Lett., vol. 12, pp. 230-232, 2000. [47] O. B. Shchekin and D. G. Deppe, “Low threshold high-T0 1.3 mm InAs quantum-dot lasers due to p-type modulation doping of the active region”, IEEE Photon. Technol. Lett., vol. 14, pp. 1231-1233, 2002. [48] T. Ohtoshi and N. Chinone, “Linewidth enhancement factor in strained quantum well lasers”, IEEE Photon. Technol. Lett., vol. 1, No.6, pp. 117-119, 1989. [49] J. C. Dries, M. R. Gokhale, H. Venohara, and S. R. Forrest “Strain-compensated InGa(As)P/InP active regions for 1.5 μm wavelength lase” IEEE Photonics Tech. Lett. vol.10, pp.42-44, 1998. [50] R.Mottahedeh, S.K.Haywood, K.Woodbridge, M.Hopkinson, G.Hill and A.River “1.3 μm InAsP quantum well lasers grown by solid source MBE” IEE Pro-optoelectron vol.145, pp.3-6, 1998. [51] H.Oohashi, S.Seki, T.Hirono, H.Sugiura, T.Amano, M.Veki, J.Nakano, M.Yamamoto, Y.Tohmori, M.Fukuda, and K.Yokoyama “High-power and high efficiency 1.3 μm InAsP compressively-strained MQW lasers at high temperature” Electro.Lett. vol.31, pp.556-557, 1995. [52] R.P. Schneider and B.W. Wessels “Photoluminecence excitation spectroscopy of InAsP/InP strained single quantum wells” J.Electro.Mater., vol.20, pp.1117-1123, 1991. [53] H.Oohashi, T.Hirono, S.Seki, H.Sugiura, J.Nakano, M.Yamamoto, Y.Tohmori, M.Fukuda, and K.Yokoyama “1.3μm InAsP compressively strained multiple-quantum well lasers for high-temperature operation” J.Appl.Phys.vol.77, pp.4119-4121, 1995. [54] C. Kazmierski, B. Theys, B. Rose, A. Mircea, A. Jalil, and J. Chevallier, “ Plasma-hydrogenated low-threshold wide-band 1.3 μm buried ridge structure laser”, Electron. Lett, vol. 25, pp. 1433-1435, 1989. [55] M. Krakowski, D. Rondi, A. Talneau, Y. Combemale, G. Chevalier, F. Deborgies, P. Maillot, P. Richin, R. Blondeau, L. D'Auria, and B. de Gremoux, “Ultra-low-threshold, high-bandwidth, very-low-noise operation of 1.52 μm GaInAsP/InP DFB buried ridge structure laser diodes entirely grown by MOCVD”, IEEE J. Quantum. Electron., vol. 25, pp. 1346-1352, 1989. [56] W. Thulke, and A. Zach, “High-temperature CW operation of planar buried-ridge structure lasers at λ=1.5 μm”, Electron. Lett., vol. 24, pp. 992-993, 1988. [57] W. Thulke, and A. Zach, “Low-threshold GaInAsP buried-contacted planar buried-ridge structure lasers”, Electron. Lett., vol. 25, pp. 366-367, 1989. [58] M. Amann, and W. Thulke, “Current confinement and leakage currents in planar buried-ridge-structure laser diodes on n-substrate”, IEEE J. Quantum. Electron., vol. 25, pp. 1595-1602, 1989. [59] C. Kazmierski, M. Blez, M. Quillec, M. Allovon, and B. Sermage, “Low-threshold GRIN-SCH AlGaInAs 1.55 μm quantum well buried ridge structure lasers grown by molecular beam epitaxy”, Electron. Letts, vol. 26, pp. 889-891, 1990. [60] K. Mobarhan, M. Razeghi, and R. Blondeau, “Ga0.8In0.2As/GaAs/Ga0.51In0.49P buried ridge structure single quantum well laser emitting at 0.98 μm”, Electron. Lett., vol. 28, pp. 1510-1511, 1992. [61] M. Blez, D. Mathoorasing, C. Kazmierski, M. Quillec, M. Gilleron, J. Landreau, and H. Nakajima, “Very low chirping of InGaAs-InGaAlAs MQW DFB BRS laser under 10 Gbits/s modulation”, IEEE J. Quantum. Electron., vol. 29, pp. 1676-1681, 1993. [62] N. Bouadma, and J. Semo, “1.3-μm GaInAsP/InP buried-ridge-structure laser and its monolithic integration with photodetector using reactive ion beam etching”, J. Lightwave Technol., vol. 12, pp. 742-748, 1994. [63] A. Plais, C. Chaumont, F. Mallecot, F. Gaborit, D. Carpentier, J. Jacquet, A. Leroy, J. Charil, and H. Nakajima, “Integrated BRS/Ridge transmit receive device fabrication using well established III-V material technology”, 10th Intern. Conf. On Indium Phosphide and Related Materials, vol. 11-15, pp. 273-275, 1998. [64] H. Shoji, K. Otsubo, T. Fujii, and H. Ishikawa, “Calculated performances of 1.3 -μm vertical cavity surface-emitting lasers on InGaAs ternary substrates”, IEEE J. Quantum. Electron., vol. 33, pp. 238-245, 1997. [65] C. L. Chua, R. L. Thomton, D. W. Treat, and C. Dunnrowicz, “Low-threshold InAlGaAs vertical-cavity surface-emitting laser arrays using transparent contacts”, Appl. Phys. Letts., vol. 72, pp. 1001-1003, 1998. [66] M. Linnik, and A. Christou, ”Design and performance of a vertical cavity surface emitting laser based on III-V quaternary semiconductor alloys for operation at 1.55μm”, IEEE Trans. Electron. Device, vol. 48, pp. 2228-2237, 2001. [67] O. B. Shchekin, and D. G. Deppe, ”Low-threshold high-T0 1.3-μmInAs quantum-dot lasers due to p-type modulation doping of the active region”, IEEE Photon. Techenol. Letts., vol. 14, pp. 1231-1233, 2002. [68] C. W. Wilmsen, H. Temkin, and L. A. Coldren, in Vertical-Cavity Surface-Emitting Lasers, Cambridge Press, United Kingdom (1999). [69] M.Born and E. Wolf, Principles of Optics, 3rd ed Oxford:Pergamon, 1965. [70] T. Mukaihara, N. Yamanaka, N. Iwai, T. Ishikawa and A. Kasukawa:”1.3um GaInAsP lasers integrated with butt-coupled waveguide and high reflective semiconductor/air Bragg reflector (SABAR) ”Electron. Lett., vol. 34, pp.882-8841998. [71] D. Olego, T. Y. Chang, E. Silberg, E. A. Caridi, and A. Pinczuk, “Compositional dependence of band-gap energy and conduction-band effective mass of In1-x-yGaxAlyAs lattice matched to InP”, Appl. Phys. Lett., vol. 41, pp. 476-478, 1982. [72] C. H. Henry, L. F. Johnson, R. A. Logan, and D. P. Clarke, “Determination of the refractive index of InGaAsP epitaxial layers by mode line luminescence spectroscopy”, IEEE J. Quantum Electron., vol. QE-21, pp.1887-1892, 1985. [73] T. E. Sale, in Vertical Cavity Surface Emitting Lasers, Wiley, New York (1995). [74] S. Hansmann, H. walter, H. Hillmer, and H. Burkhard, “Static and dynamic properties of InGaAsP-InP distributed Bragg feedback lasers-Adetailed comparison between experiment and theory”, J. Quantum Electron., vol. 30, pp. 2477-2483, 1994. [75] S. Rapp, J. Piprek, K. Streubel, J. Andre, and J. Wallin, “Temperature sensitivity of 1.54 μm vertical-cavity lasers with an In-based Bragg reflector”, J. Quantum Electron., vol. 33, pp. 1839-1845, 1997. [76] F. Delorme, S. Grosmaire, A. Gloukhian, and A. Ougazzaden, “High power operation of widely tunable 1.55 μm distributed Bragg reflector laser”, Electron. Lett., vol. 33, pp. 210-211, 1997. [77] J. Debray, N. Bouche, G. L. Roux, R. Raj, and M. Quillec, “Monolithic vertical cavity device lasing at 1.55 μm InGaAlAs system”, Electron. Lett., vol. 33, pp. 868-869, 1997. [78] O. Blum, J. F. Klem, K. L. Lear, G. A. Vawter, and S. R. Kurtz, “Optically pumped, monolithic, all-epitaxila 1.56 μm vertical cavity surface emitting laser using Sb-based reflectors”, Electron. Lett., vol. 33, pp. 1878-1880, 1997. [79] G. Almuneau, F. Genty, L. Chusseau, N. Bertru, B. Fraisse, and J. Jacquet, “Molecular bean epitaxial growth of 1.3 μm high-reflectivity AlGaAsSb/AlAsSb Bragg mirror”, Electron. Lett., vol. 33, pp. 1227-1228, 1997. [80] G. W. Taylor and P. R. Claisse, “Transport solution for SCH quantum-well laser diode”, IEEE J. Quantum Electron., vol. 31, pp. 2133-2141, 1995
|