(3.227.235.183) 您好!臺灣時間:2021/04/13 21:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:雷伯薰
研究生(外文):Po-Hsun Lei
論文名稱:1.3微米n型摻雜應力補償砷化鋁鎵銦/砷化鋁鎵銦量子井雷射
論文名稱(外文):1.3μm n-type modulation-doped strain-compensated multiple quantum well (MD-SCMQW) AlGaInAs/AlGaInAs laser diodes
指導教授:吳孟奇
指導教授(外文):Meng-Chyi Wu
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:142
中文關鍵詞:n型調變摻雜砷化鋁鎵銦/砷化鋁鎵銦量子井雷射應力補償量子井雷射
外文關鍵詞:n-type modulation-dopedAlGaInAs/AlGaInAs laser diodesstrain-compensated multiple quantum well laser diodes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在區域網路與光纖通訊系統中,1.3微米與1.55微米波長之半導體雷射為其主要之信號光源。1.3微米雷射有著低色散但高強度損耗率的特性。而1.55微米雷射則與1.3微米雷射有著相反的特性。在另一方面,由於操作時所引起的高溫會使得雷射模組無法長時間使用且退化其特性,所以必需加入熱電冷卻器以提高雷射壽命。提高雷射模組價格,降低雷射模組的良率。為了解決這些問題,1.3微米高功率且毋需加入熱電冷卻器之砷鋁化銦鎵雷射取代傳統磷砷化銦鎵雷射成為新的通訊用雷射光源。砷鋁化銦鎵雷射有著較磷砷化銦鎵雷射為高的導帶能帶差。較高的導帶能帶差可以減緩影響長波長雷射表現之Auger效應,如此,可以有效地增加雷射輸出功率。在本論文中,我們首先研究1.3微米砷鋁化銦鎵/砷鋁化銦鎵應力補償型雷射。在量子井加入壓應力可以得到某些光與降低臨界電流的優點,但是必須以張應力加以補償以增加量子井的數目。在寬面積雷射結構,切面鏡面之900 μm共振腔長度之1.3微米砷鋁化銦鎵/砷鋁化銦鎵應力補償型雷射中,臨界電流密度與微分量子效率分別為400 A/cm2與22%。而內部量子效應、內部光損耗與臨界增益之計算值則分別是54.1%, 6.5 cm-1, 及45 cm-1。特徵溫度在20至80 ℃操作溫度為75 K。在25 ℃、 60 mA操作下,雷射發光頻譜之波長之紅移率為0.5 nm/℃。漸變折射率分離局限異質接面結構有著較佳之光局限特性,且可以有效地緩和突變接面結構之電場分佈。此外,為了有效地緩和突變接面結構之電場分佈,我們引入磷砷化銦鎵漸變組成層(GC)作為在砷化銦鎵與磷化銦接面之間的過渡層來緩和電場的分佈。引入磷砷化銦鎵漸變組成層之3微米脊狀雷射在連續波條件操作下之臨界電流為14 mA,電阻為7.8 Ω,微分量子效率為47.46%。在20至80 ℃操作下,特徵溫度溫度為79 K,在80至100 ℃操作下,特徵溫度溫度為42 K。雷射發光頻譜之波長之紅移率為0.43 nm/℃。這比未引入磷砷化銦鎵漸變組成層之雷射二極體有著較好的特性。另外,引入磷砷化銦鎵漸變組成層在300微米與900微米之微分增益分別為8.45x10-16 cm2及4.68x10-16 cm2。在80 mA操作電流、20 ℃操作溫度下之鬆弛振盪頻率為9.2 GHz。如果不計遲滯因子與耦合損耗,其3-dB頻寬約為14.26 GHz。近年來,有研究指出適當地在量子井之位障作n型調變摻雜可以有效得降低穿透載子濃度與增加光增益。最佳之摻雜條件為5x1018 cm-3。在此條件下,寬面積結構之雷射之臨界電流密度、內部量子效應、內部光損耗、及300微米共振腔長度之臨界增益、穿透電流密度分別為:215 A/cm2、 61.7%、7.5 cm-1、 47.5 cm-1、及 71 A/cm2。這些結果要比未摻雜或其它摻雜濃度之相同結構雷射要來的好。此外,劈裂鏡面脊狀雷射在連續波條件操作下之臨界電流為12.5 mA,微分增益為52.3%,在20至80 ℃操作下,特徵溫度溫度為85 K。在80 mA操作電流、20 ℃操作溫度下,鬆弛頻率約為9.89 GHz。如果不考慮遲滯因子與耦合損耗,3-dB頻寬約為15.34 GHz。磷砷化銦/磷化銦/磷化銦鎵量子井導帶能帶差較磷砷化銦鎵量子井為高。在本論文中也對n型摻雜之磷砷化銦/磷化銦/磷化銦鎵量子井進行研究。我們發現:在磷化銦/磷化銦鎵區域最佳之矽摻雜濃度為1x1018 cm-3。在最佳之情況下,900微米共振腔之臨界電流密度為0.8 kA/cm2。此外,微分量子效率為25%、內部量子效率為31%、內部光損耗為19.01 cm-1、且臨界增益可以降至43.07 cm-1這均較未摻雜量子井之臨界增益44.1 cm-1為低。
1.3 and 1.55 μm semiconductor laser are most popular for the application in subscriber networks and optical interconnection systems. 1.3 μm-based semiconductor lasers have lower dispersion but higher attenuation compared to that of 1.55 μm-based semiconductor lasers. Besides, one of the most troublesome components in present laser modules is a thermoelectric cooler, which both makes the modules expensive and complicated but also may degrade its long-term reliability. In order to overcome these problems, 1.3 μm high power and without thermoelectric cooler AlGaInAs with high conduction band offset than conventional GaInAsP are used as light source in optical interconnection systems. The higher conduction band offset can alleviate the Auger recombination that will affect the performance of long wavelength laser diode so that increase the light output power. In this thesis, we first investigate the 1.3 μm AlGaInAs/AlGaInAs strain compensated multiple-quantum well. The compress strain wells which have several merits in optical and reduction of threshold current and compensated by tensile barriers to increase the well number. The threshold current density and differential quantum efficiency for the as-cleaved BA LDs with a 900 μm cavity length are 400 A/cm2 and 22%, respectively. We also calculate the internal quantum efficiency, internal optical loss, and threshold gain as 54.1%, 6.5cm-1, and 45 cm-1. The characteristic temperature of 75 K between 20 and 80 ℃, and the longitudinal mode oscillation has a red-shift rate of 0.5 nm/℃ under 25 ℃ and 60 mA. Graded index separate confinement heterostructure (GRINSCH) has superior optical confinement and smooth electric field intensity distribution than that of step (or abrupt) structure. Besides, to tailor the electric field intensity distribution in the abrupt junction between InGaAs and InP, we introduce a thin graded composition (GC) GaInAsP layer between InGaAs and InP. With the GC GaInAsP layer, the 3μm-ridge-stripe LDs without facet coating under the CW operation exhibit a lower threshold current of 14 mA, a lower resistance of 7.8 Ω, a higher differential quantum efficiency of 47.46%, a higher characteristic temperature of 79 K in the range from 20 to 80 ℃and 42 K in 80 to 100 ℃, and a red-shift rate of 0.43 nm/℃, which are better than those of the LDs without the GC GaInAsP layer. The differential gain for LDs with GC GaInAsP layer is about 8.45x10-16 cm2 for 300-μm cavity length and decreases to 4.68x10-16 cm2 for 900 μm. The relaxation oscillation frequency is about 9.2 GHz under the 80 mA driving current at 20℃. With neglecting the effect of damping factor and couple loss, the calculated 3-dB frequency width can reach to 14.26 GHz under the 80 mA driving current at 20℃. More recently, modulation doping in the barriers will serve several merits such as lower transparency carrier density and higher optical gain. The BA LDs with this optimum concentration of 5 x 1018 cm-3 in the doped barriers exhibit the threshold current density, internal quantum efficiency, internal optical loss, threshold gain (for the cavity length of 300 μm), and transparency current density of 215 A/cm2, 61.7%, 7.5 cm-1, 47.5 cm-1, and 71 A/cm2, respectively, which are much better than those of the LDs with undoped and other doping concentrations in the barriers. In addition, the ridge-stripe LDs without facet coating have a lower threshold current of 12.5 mA, an enhanced differential quantum efficiency of 52.3%, a characteristic temperature of 85 K in the temperature range from 20 to 80 ℃, and a red-shift rate of 0.38 nm/℃ under the CW operation. The relaxation oscillation frequency with driving current of 80 mA under 20 ℃ is about 9.9 GHz. Without consideration to damping factor and couple loss, the calculated 3-dB bandwidth is about 15.34 GHz. InAsP/InP/InGaP MQW has higher conduction band offset than that of GaInAsP MQW. In this thesis, InAsP/InP/InGaP with n-type doping laser diode is also investigated. The optimum doping concentration is 1x1018 cm-3 in the Si-doped barrier and InP intermediate layer. The threshold current density can be reduced to 0.8 kA/cm2 for 900-μm-cavity length for these optimum thickness and doping concentration. In addition, the LDs exhibit an enhanced differential quantum efficiency of 25% and an internal quantum efficiency of 31%. The internal optical loss can be also lowered to 19.01 cm-1. The threshold gain will be reduced to 43.07 cm-1 compared to 44.1 cm-1 for the LDs with undoped active region.
Contents
Chinese abstract…………………………………………………………I
English abstract………………………………………………………..IV
List of Tables……………………………………………………………X
List of Figures………………………………………………………….XI
Chapter 1. Introduction………………………………………………...1
1.1 Strain compensated MQW and strain MQW…………………………….....2
1.2 Temperature dependence in 1.3-μm AlGaInAs-InP MQW………………...3
1.3 Multiple quantum barriers (MQB) AlGaInAs-InP MQW laser………….…4
1.4 Electron stopper layer (ESL) AlGaInAs-InP MQW laser………………….4
1.5 Modulation doped (MD) AlGaInAs-InP MQW laser………………………4
Chapter 2 Process and theoretical analysis……………………………6
2.1 Process for broad area (BA) structure LDs…………………………………6
2.1.1 Broad area stripe definition………………………………………….6
2.1.2 Metallization………………………………………………………...6
2.2 Process for ridge stripe structure LDs………………………………………7
2.2.1 Ridge definition……………………………………………………..7
2.2.2 Self-align…………………………………………………………….8
2.2.3 Metallization………………………………………………………...8
2.3 Multiple quantum well (MQW)…………………………………………….9
2.3.1 Density of state (DOS)………………………………………………9
2.3.2 Radiation recombination…………………………………………...10
2.4 Auger Recombination……………………………………………………..13
2.4.1 CCCH process……………………………………………………..13
2.4.2 CHHS process……………………………………………………..17
2.4.3 CHHL process……………………………………………………..17
2.5 Graded index separate confinement heterostructure (GRINSCH)………..17
2.6 Rate equation and noise characteristics….………………………………..21
2.6.1 Rate equation………………………………………………………21
2.6.2 The Langevin approach and RIN……………………….………….25
2.7 Modulation-doping strain compensated multiple quantum well (MD-SC-MQW)………………………….……………………………27
Chapter 3 1.3 μm Strain-Compensated AlGaInAs/AlGaInAs Multiple-Quantum-Well (MQW) Laser Diodes…………………………………….……………29
3.1. Introduction……………………………………………………………….29
3.2. Device Structure and Fabrication………………………………………...30
3.3. Results and Discussion…………………………………………………...31
3.4. Conclusions………………………………………………………………33
Chapter 4 1.3 μm AlGaInAs/AlGaInAs Strain-Compensated Multiple-Quantum-Well Laser Diodes with GC GaInAsP Layer……………………………...…….…..34
4.1 Introduction………………………………………………………………..34
4.2 Device Fabrications……………………………………………………….36
4.3 Static Characteristics……………………………………………………...37
4.4 Noise Characteristics……………………………………………………...40
4.5 Conclusions……………………………………………………………….42
Chapter 5 1.3 mm n-type Modulation-Doped Strain-Compensated Multiple Quantum Well (MD-SCMQW) AlGaInAs / AlGaInAs Laser Diodes………………………………..44
5.1 Introduction……………………………………………………….……….44
5.2 Growths and Fabrication of MD-SC-MQW LDs…………………………46
5.3 Static Characteristics………………………………………………………49
5.4 Relative Intensity Noise (RIN)……………………………………………56
5.5 Conclusions……………………………………………………………….58
Chapter 6 1.3 mm InAsP Multi-Quantum Well Laser Diodes with the n-type Modulation-Doped InAsP/InP/InGaP Active Region……………………………………………………..60
6.1 Introduction………………………………………………………………..60
6.2 Growths and Characterization of MQW Active Region…………………..61
6.3 Fabrication and Characterization of Laser Diodes………………………..62
6.4 Conclusions……………………………………………………………….68
Chapter 7 Suggestion for future work……………………………….70
7.1 Buried ridge structure (BRS)……………………………………………..70
7.2 InP-based vertical-cavity surface-emitting lasers (VCSEL)……………..72
7.2.1 Introduction……………………………………………………….72
7.2.2 Transmission matrix method (TMM)………………………….…..73
7.2.3 Device fabrication…………………………………………………74
Reference………………………………………………………………132
List of Tables
TABLE I. Summary of the FWHM and peak wavelength of 300 K PL spectra, infinite threshold current density, internal quantum efficiency, internal optical loss, threshold gain (L = 300 mm), and transparent injection current density for various doping concentrations in the doped barriers…….……………………………………..………...76
TABLE II. The calculated results of threshold gain for the different doped thickness, doping concentrations, and cavity lengths of the barriers and doped intermediate layers…………………………………...77
List of Figures
Figure 1.1 The measured loss in a single-mode silica fiber as a function of wavelength………………………………………………………78
Figure 1.2 The wavelength range of semiconductor lasers covered by different material systems……………………………………………..…..79
Figure 1.3 The band gap and lattice constant for GaxIn1-xAs1-yPy and (AlxGa1-x)yIn1-yP obtained by varying compositions x and y……80
Figure 1.4 The schematic (a) compress strain, (b) tensile strain, and (c) unstrained………………………………………………………..81
Figure 2.1 The schematic (a) BA stripe definition and (b) metallization…….82
Figure 2.2 The schematic process for ridge stripe laser diode (a) ridge definition, (b) self-align, and (c) metallization…………………………………………..……....…84
Figure 2.3 Band to band Auger recombination processes including (a) CCCH, (b) CHHS, and (c) CHHL shown schematically for quantum well laser. Dashed curve shows the possibility of inter-subband scattering……………………………………………………...….88
Figure 3.1 The schematic conduction band diagram of the 1.3 μm SC-MQW GRINSCH AlGaInAs/AlGaInAs LDs………………………….…………………………………90
Figure 3.2 The calculated material gain spectra of the LDs with the SC-MQW active region for different sheet carrier densities………………..91
Figure 3.3 The 300 K photoluminescence (PL) spectra of strain compensated AlGaInAs/AlGaInAs active region……………………………92
Figure 3.4 The threshold current density and differential quantum efficiency as a function of cavity length……………………………………..93
Figure 3.5 (a) The CW light-current characteristics at various temperatures for the as-cleaved 3 μm-ridge-stripe LDs, and (b) the threshold current and slope efficiency as function of operation temperature…………………………………………………….94
Figure 3.6 (a) The dependence of lasing spectra at 60 mA on the heatsink temperature of the LDs, and (b) the lasing spectrum as a function of operation temperature……………………………………..….95
Figure 4.1 The schematic conduction band diagram of the 1.3 μm SC-MQW GRINSCH AlGaInAs/AlGaInAs LDs (a) without and (b) with GC GaInAsP transitive layer with the zinc doping profile……………………………………………………..…...96
Figure 4.2 Room-temperature CW light output power and voltage as a function of injected current for the 300-μm-cavity-length as-cleaved LDs with/without the GC GaInAsP layer………………………….…97
Figure 4.3 (a) The temperature dependence of CW light output power against forward current characteristic for the LDs with GC GaInAsP and (b) the dependence of threshold current and slope efficiency on the operation temperature……………………………...……….……98
Figure 4.4 Threshold current and the differential quantum efficiency for the LDs with/without the InGaAsP layer as a function of operation temperature under CW operation………………………….……99
Figure 4.5 (a) The dependence of lasing spectra at 60 mA on the heatsink temperature for the LDs with a GC GaInAsP layer (b) the lasing wavelength as a function of temperature and (c) the lasing spectra as a function of operation temperature under the LDs with and without graded composition (GC) GaInAsP layer……………………………………………….……….….100
Figure 4.6 The calculated differential gain (dg/dn) as a function of cavity length for the LDs with GC GaInAsP layer……………………102
Figure 4.7 The relative intensity noise (RIN) as function of frequency response with increasing drive current under increasing operation temperature of (a) 20℃,(b) 40℃,(c) 60℃, and (d) 80℃………………………………………...………………….....103
Figure 4.8 The relaxation oscillation frequency for strain compensation AlGaInAs /AlGaInAs multiple quantum well with GC GaInAsP layer as a function of the square root of injected current minus threshold under different operation temperature…………..…..105
Figure 5.1 The schematic of the device structure and conduction band diagram of the 1.3 mm MD-SC-MQW GRINSCH AlGaInAs/AlGaInAs LDs….…………………………………………………………..106
Figure 5.2 The threshold current density as a function of inverse cavity length for the AlGaInAs/AlGaInAs SC-MD-MQW BA LDs with different doping concentrations in the doped region of the barrier…………………………………………………………...107
Figure 5.3 The differential quantum efficiency ηd as a function of the inverse cavity length 1/L for the LDs with different doping concentrations in the doped region of the barrier……………………………….108
Figure 5.4 (a) The inverse differential efficiency as a function of cavity length, and (b) the calculated internal quantum efficiency and internal optical loss as a function of doping concentration in the doped region of the barrier…………………………………… ……....109
Figure 5.5 The room-temperature CW light output power as a function of injected current for the 300-mm cavity-length as-cleaved LDs without doping and doped with 5 x 1018 cm-3 in the barriers….110
Figure 5.6 (a) The temperature dependence of light output power against CW forward current characteristic for the ridge-stripe LDs with the barriers doped to 5 x 1018 cm-3. (b) summary of threshold current and slope efficiency of barriers doped to 5 x 1018 cm-3 under operation temperature. (c) the dependence of slope efficiency and threshold current as a function of operation temperature for doped and undoped barriers LDs under the increase operation temperature…………………………………………………….111
Figure 5.7 The dependence of lasing spectra at 60 mA on the heatsink temperature of the LDs (a) doped barriers (b) undoped barriers (c) summary of lasing spectrum for doped/undoped barriers………………………………………………………....113
Figure 5.8 The relative intensity noise (RIN) as function of frequency response with increasing drive current under the operation temperature of (a) 20℃, (b) 40℃, (c) 60, and (d) 80 ℃……………………………………………………………….115
Figure 5.9 The relaxation frequency response as a function of injection current minus threshold current under different operation temperature………………………...…………………………..117
Figure 5.10 The relaxation frequency response as a function of injection current minus threshold current under operation temperature of 20℃, 40℃, and 80℃…………………………………………….……………….118
Figure 6.1 The conduction-band schematics of (a) the doping width and (b) doping concentration for the barriers and intermediate layers…………………………………………………………..119
Figure 6.2 The peak wavelength and FWHM of 300K PL spectra as a function of doped thickness (left) and doping concentration (right) for the barriers and intermediate layers………………………………..120
Figure 6.3 The light output power as a function of injection current of mesa structure under pulse operation………………………………...121
Figure 6.4 (a) The threshold current density as a function of thickness of doped In0.86Ga0.14P barrier and doped InP intermediate layer with different cavity lengths. (b) The infinite threshold current density as a function of thickness of doped In0.86Ga0.14P barrier and doped InP intermediate layer………………………………………….122
Figure 6.5 (a) The threshold current density as a function of doping concentration of the 2 nm-thick In0.86Ga0.14P doped barrier and 6.2 nm-thick InP doped intermediate layer for the MD-MQW LDs with a 900 mm cavity length. (b) The infinite threshold current density versus various doping concentrations of undoped, 1x1018, 3x1018 cm-3……………………………………………………..123
Figure 6.6 The inverse differential quantum efficiency 1/ηd as a function of the cavity length L for the LDs with different (a) doped thicknesses and (b) doping concentrations………………………………………………….124
Figure 6.7 The calculated internal quantum efficiency and internal optical loss as a function of (a) doped barrier width and intermediate layer thickness and (b) doping concentration……………………..…………………………..125
Figure 6.8 The threshold gain as a function of doping concentration and doping thickness for the barriers and doped intermediate layers………126
Figure 7.1 The process of BRS (a) Ridge stripe definition, (b) regrowth and self-align, and (c) metalization………………………………....127
Figure 7.2 The suggestion InP based VCSEL (a) oxide confinement structure and (b) improved structure……………………………………..130
[1] M.T. Camargo silva, J.P. Sih, T.M. Chou, J.K. Kirk, G.A. Evans, and J.K. Butler, “ ‘1.3 μm strained MQW AlGaInAs and InGaAsP ridge-waveguide lasers a comparative study”, SBMO/IEEE MTT-S IMOC'99 Proceedings, pp. 10-12, 1999.
[2] H. Wada, K. Takemasa, T. Munakata, M. Kobayashi, and T. Kamijoh, “Effect of well number on temperature characteristics in 1.3-μm AlGaInAs-InP Quantum-well lasers”, IEEE J. Selected Topics in Quantum Electron., vol. 5, pp. 420-427, 1999.
[3] C. E. Zah, R. B. Bhat, B. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. C. Flanders, and J. J. Hsieh, “High performance uncooled 1.3 μm AlxGayIn1-x-yAs/InP strained-layer quantum well lasers for subscriber loop application”, IEEE J. Quantum Electron., vol. 30, No.2, pp. 511-523, 1994.
[4] S. J. Sweeney, T. Higashi, A.R. Adams T. Uchida, and T. Fujii, “Improved temperature dependence 1.3 μm AlGaInAs-based MQW semiconduct diode lasers revealed by hydrostatic pressure”, Electron. Lett. vol. 29, pp.2130-2132, 1998.
[5] J. W. Pan and J. I. Chyi, “Theoretical study of the temperature dependence of 1.3- μm AlGaInAs-InP multiple-quantum —well lasers”, IEEE J. Quantum Electron. vol. 32, pp. 2133-2138, 1996.
[6] T. Higashi, T. Yamamoto, S. Ogita, and M. Kobayashi, “Experimental analysis of characteristic temperature in quantum well semiconductor lasers”, IEEE J. select. Topics. Quantum. Electron., vol. 3, pp. 513-521, 1997.
[7] N. Yamamoto, S. Seki, Y. Noguchi, and S. Kondo, “Design criteria of 1.3-μm multiple-quantum —well lasers for high-temperature operation”, IEEE Photon. Technol. Lett., vol. 12, pp.137-139, 2000.
[8] T. Takagi, F. Koyama, and K. Iga, “Design and photoluminescence study on a multiquantum barrier”, IEEE J. Quantum. Electron., vol. 27, pp. 1511-1519, 1991.
[9] J. W. Pan, K. G. Chyi, Y. K. Tu, and J. W. Liaw, “Suppression of electron and hole leakage in 1.3 mm AlGaInAs/InP quantum well lasers using multiquantum barrier”, Appl. Phys. Lett., vol. 72, pp. 27-29, 1998.
[10] J. W. Pan, M. H. Chen, J. I. Chyi, and T. T. Shih, “Temperature-dependent characteristics of 1.3-mm AlGaInAs-InP lasers with multiquantum barriers at the guiding layers”, IEEE Photon. Technol. Letts., vol. 10, pp. 1700-1702, 1998.
[11] N. Ohnoki, G. Okazaki, F. Koyama, and K. Iga, “Record high characteristic temperature (T0 = 122K) of 1.55 mm strain-compensated AlGaInAs/AlGaInAs MQW lasers with AlAs/AlInAs multiquantum barrier”, Electron. Lett., vol. 35, pp. 51-52, 1999.
[12] K. Takemasa, T. Munakata, H. Wada, and T. Kamijoh, “1.3 mm AlGaInAs-AlGaInAs strained multiple-quantum-well laser with a p-AlInAs electron stopper layer”, IEEE Photon. Technol. Lett., vol. 10, No.4, pp. 495-497, 1998.
[13] K. Uomi, “Modulation-doped multi-quantum well (MD-MQW) lasers, I. theory”, Jpn. J. Appl. Phys., vol. 29, pp. 81-87, 1990.
[14] H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara and A. Kasukawa, “Low threshold 1.3 μm InAsP n-type modulation doped MQW lasers grown by gas-source molecular-beam epitaxy”, Electron. Lett., vol. 34, pp. 888-889, 1998.
[15] H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, and A. Kasukawa, “1.3 μm InAsP n-type modulation doped MQW lasers grown by gas-source molecular-beam epitaxy”, IEEE J. Selected Topics in Quantum Electron., vol. 5, pp. 449-456, 1999.
[16] H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, and A. Kasukawa, “1.3 μm InAsP n-type modulation doped MQW lasers”, IEEE J. Quantum. Electron., vol. 36, No.6, pp. 728-735, 2000.
[17] K. Nakahara, K. Uomi, T. Tsuchiya, A. Niwa, T. Haga, and T. Taniwatari, “1.3 μm InGaAsP-InP n-type modulation-doped strained multiquantum-well lasers”, IEEE J. Selected Topics in Quantum Electron., vol. 3, No.2, pp. 166-172, 1997.
[18] J. N. Sweetser, T. J. Dunn, L. Waxer, I. A. Walmsley, S. M. Shank, and G. W. Wicks, “Effect of n-type modulation doping of quantum wells on the dynamics of photoluminescence”, Appl. Phys. Lerrs., vol. 63, pp. 3461-3463, 1993.
[19] S. R. Chinn, P. S. Zory, and A. R. Reisinger, “A model for GRIN-SCH-SQW diode lasers”, IEEE J. Quantum Electron. Vol.24, pp. 2191-2214, 1988.
[20] N. K. Dutta, “Calculated temperature dependence of threshold current of GaAs-AlxGa1-xAs deoble heterostructure lasers”, J. Appl. Phys., vol.52, pp. 70-73, 1981.
[21] H. C. Cascy, and M. B. Panish, in Heterostructure lasers, New York: Academic, 1978.
[22] J. I. Davies, A. C. Marshall, P. T. Williams, M. D. Scott, A. C. Carter, “AlGaInAs/InP double heterostructure lasers grown by low-pressure metal organic vapour-phase epitaxy for emmision at 1300nm”, Electron. Lett. Vol.24, pp732-733, 1988.
[23] A. J. Springthorpe, T. Garanzotis, P. Paddon, G. Pakulski, and K. I. White, “Strained 1.3μm MQW AlGaInAs lasers grown by digital alloy MBE”, Electron. Lett. Vol.36, pp1631-1632, 2000.
[24] H. K. Choi, C. A. Wang, D. F. Kolesar, R. L. Aggarwal, and J. N. Walpole, “High-power high-temperature operation of AlInGaAs-AlGaAs strained single-quantum-well diode lasers”, IEEE Photon. Tech. Lett. Vol.3, pp857-859, 1991.
[25] C. C. Lin, K. S. Liu, M. C. Wu, and H. P. Shiao, “Low threshold current and high temperature operation of 1.55μm strain-compensated multiple quantum well AiInAs/AlGaInAs laser diodes”, Electron. Lett. Vol.34, 1998.
[26] R. F. Kazarinov and G. L. Belenky, “Novel design of AlGaInAs-InP lasers operating at 1.3 mm”, IEEE J. Quantum Electron., vol. 31, No.3, pp. 423-426, 1995.
[27] H. Y. Anthony Chung, G. Stareev, J. Joos, J. Maehnss, and K. Ebeling, “Very low threshold current density 1.3μm-InAsP/InGaAsP strained quantum well GRINSCH laser grown by gas source MBE”, 10th Intern. Conf. on Indium Phosphide and Related Materials, pp706-708, 1998.
[28] L. A. Coldren and S. W. Corzine, in Diode Laser and Photonic Integrated Circuits, Chap. 2, Wiley, New York (1995).
[29] G. P. Agrawal and N. K. Dutta, in Semiconductor Lasers, Chap. 2, Van Nostrand Reinhold, New York (1993).
[30] A.Sugimura, “Band-to-band Auger recombination effect on InGaAsP laser threshold”, IEEE J. Quantum Electron., vol. 17, pp. 627-635. 1981.
[31] N. K. Dutta, and R. J. Nelson, “Temperature dependence of threshold of InGaAsP/InP double-heterostructure lasers and Auger recombination”, Appl. Phys. Lett. vol. 38, no.3, pp. 407-409. 1981.
[32] M. Asada, and Y. Suematsu, “The effect of loss and nonradiative recombination on the temperature dependence of threshold current in 1.5-1.6 μm GaInAsP/InP lasers”, IEEE J. Quantum Electron., vol. 19, pp. 917-923, 1983.
[33] Y. Zou, J. S. Osinski, P. Grodzinski, P. D. Dapkus, W. C. Rideout, W. F. Sharfin, and F. D. Crawford, “Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5μm compressively strained semiconductor lasers”, IEEE J. Quantum Electron., vol. 20, pp. 1565-1575, 1993.
[34] S. Seki, W. W. Lui, and K. Yokoyama, “Explanation for the temperature insensitivity of the Auger recombination rates in 1.55 μm InP-based strained-layer quantum-well lasers”, Appl. Phys. Lett., vol. 66, pp. 3093-3095, 1995.
[35] S. Seki, H. Oohashi, H. Sugiura, T. Hironr, and K. Yokoyama, “ Study on the dominant mechanism for the temperature sensitivity of threshold current in 1.3-μm InP-based strain-layer quantum-well lasers”, IEEE J. Quantum Electron., vol. 32, pp. 1478-1486, 1996.
[36] S. J. Sweeney, A. F. Phhillips, A. R. Adams, E. P. O'Reilly, and P. J. A. Thijs, “The effect of temperature dependent process on the performance of 1.5μm compressively strained InGaAs(P) MQW semiconductor diode lasers,” IEEE Phton. Technol. Lett. vol. 10, pp. 1076-1078, 1998.
[37] J. Braithwaite, M. Silver, V. A. Wilkinson , E. P. O'Reilly, and A. R. Adams, “Role of radiative and nonradiative process on the temperature sensitivity of strained and unstrained 1.5-μm InGaAs(P) quantum well lasers”, Appl. Phys. Lett., vol. 67, pp. 3546-3548, 1995.
[38] S. J. Sweeney, A. F. Phhillips, A. R. Adams, E. P. O'Reilly, M. Silver, and P. J. A. Thijs, ”Transition from radiative to nonradiative recombinationin 1.3- and 1.5μm InGaAs(P) multiple quantum well semiconductor diode lasers”, in Proc. CLEO'98, CWN 4, pp. 304, 1998.
[39] T. Higashi, J. Sweeney, A.F. Phillips, A.R. Adams, E.P. O’reilly, T. Uchida, and T. Fujii, “Experimental analysis of temperature dependence in 1.3 μm AlGaInAs-InP strained MQW lasers”, IEEE J. of Selected Topics in Quantum. Electron.,vol. 3, pp. 413-419, 1999.
[40] A. Furuya, and H. Tanaka, “Superposed multiquantum barriers for InGaAlP heterojunctions”, vol. 28, pp. 1977-1982, 1992.
[41] M. Irikawa, H. Shimizu, T. Fukushima, K. Nishikata, and Y. Hirayama, “Strained GaInAs-AlGaInAs 1.5-μm -wavelength multiquantum-well lasers loaded with GaInAs-AlInAs multiquantum barriers at the p-side optical confinement layer”, IEEE J. Selected Topics in Quantum Electron.,vol. 1, pp. 285-292, 1995.
[42] A. P. Morrison, J. D. Lambkin, C. J. van der Poel, and A. Valster, “Evaluation of multiquantum barriers in bulk double heterostructure visible laser diode”, IEEE Photo. Tech. Lett., vol. 8, pp. 849-851, 1996.
[43] S. J. Chang, Y. K. Su, J. F. Chen, and B.R. Huang, “Effects of electron effective mass on the multiquantum barrier structure in AlGaInP laser diode”, IEE Proc.-Optoelectron, vol. 1, pp. 117-120, 2001.
[44] M. Ahmed, M. Yamada, “Influence of instantaneous mode competition on the dynamics of semiconductor lasers”, IEEE J. Quantum electronics, vol. 38, pp. 682-693, 2002.
[45] D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 mm room-temperature GaAs-based quantum-dot laser”, Appl. Phys. Lett., vol. 73, pp. 2564-2566, 1998.
[46] G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low threshold oxide-confined 1.3 mm quantum dot laser:, IEEE Photon. Technol. Lett., vol. 12, pp. 230-232, 2000.
[47] O. B. Shchekin and D. G. Deppe, “Low threshold high-T0 1.3 mm InAs quantum-dot lasers due to p-type modulation doping of the active region”, IEEE Photon. Technol. Lett., vol. 14, pp. 1231-1233, 2002.
[48] T. Ohtoshi and N. Chinone, “Linewidth enhancement factor in strained quantum well lasers”, IEEE Photon. Technol. Lett., vol. 1, No.6, pp. 117-119, 1989.
[49] J. C. Dries, M. R. Gokhale, H. Venohara, and S. R. Forrest “Strain-compensated InGa(As)P/InP active regions for 1.5 μm wavelength lase” IEEE Photonics Tech. Lett. vol.10, pp.42-44, 1998.
[50] R.Mottahedeh, S.K.Haywood, K.Woodbridge, M.Hopkinson, G.Hill and A.River “1.3 μm InAsP quantum well lasers grown by solid source MBE” IEE Pro-optoelectron vol.145, pp.3-6, 1998.
[51] H.Oohashi, S.Seki, T.Hirono, H.Sugiura, T.Amano, M.Veki, J.Nakano, M.Yamamoto, Y.Tohmori, M.Fukuda, and K.Yokoyama “High-power and high efficiency 1.3 μm InAsP compressively-strained MQW lasers at high temperature” Electro.Lett. vol.31, pp.556-557, 1995.
[52] R.P. Schneider and B.W. Wessels “Photoluminecence excitation spectroscopy of InAsP/InP strained single quantum wells” J.Electro.Mater., vol.20, pp.1117-1123, 1991.
[53] H.Oohashi, T.Hirono, S.Seki, H.Sugiura, J.Nakano, M.Yamamoto, Y.Tohmori, M.Fukuda, and K.Yokoyama “1.3μm InAsP compressively strained multiple-quantum well lasers for high-temperature operation” J.Appl.Phys.vol.77, pp.4119-4121, 1995.
[54] C. Kazmierski, B. Theys, B. Rose, A. Mircea, A. Jalil, and J. Chevallier, “ Plasma-hydrogenated low-threshold wide-band 1.3 μm buried ridge structure laser”, Electron. Lett, vol. 25, pp. 1433-1435, 1989.
[55] M. Krakowski, D. Rondi, A. Talneau, Y. Combemale, G. Chevalier, F. Deborgies, P. Maillot, P. Richin, R. Blondeau, L. D'Auria, and B. de Gremoux, “Ultra-low-threshold, high-bandwidth, very-low-noise operation of 1.52 μm GaInAsP/InP DFB buried ridge structure laser diodes entirely grown by MOCVD”, IEEE J. Quantum. Electron., vol. 25, pp. 1346-1352, 1989.
[56] W. Thulke, and A. Zach, “High-temperature CW operation of planar buried-ridge structure lasers at λ=1.5 μm”, Electron. Lett., vol. 24, pp. 992-993, 1988.
[57] W. Thulke, and A. Zach, “Low-threshold GaInAsP buried-contacted planar buried-ridge structure lasers”, Electron. Lett., vol. 25, pp. 366-367, 1989.
[58] M. Amann, and W. Thulke, “Current confinement and leakage currents in planar buried-ridge-structure laser diodes on n-substrate”, IEEE J. Quantum. Electron., vol. 25, pp. 1595-1602, 1989.
[59] C. Kazmierski, M. Blez, M. Quillec, M. Allovon, and B. Sermage, “Low-threshold GRIN-SCH AlGaInAs 1.55 μm quantum well buried ridge structure lasers grown by molecular beam epitaxy”, Electron. Letts, vol. 26, pp. 889-891, 1990.
[60] K. Mobarhan, M. Razeghi, and R. Blondeau, “Ga0.8In0.2As/GaAs/Ga0.51In0.49P buried ridge structure single quantum well laser emitting at 0.98 μm”, Electron. Lett., vol. 28, pp. 1510-1511, 1992.
[61] M. Blez, D. Mathoorasing, C. Kazmierski, M. Quillec, M. Gilleron, J. Landreau, and H. Nakajima, “Very low chirping of InGaAs-InGaAlAs MQW DFB BRS laser under 10 Gbits/s modulation”, IEEE J. Quantum. Electron., vol. 29, pp. 1676-1681, 1993.
[62] N. Bouadma, and J. Semo, “1.3-μm GaInAsP/InP buried-ridge-structure laser and its monolithic integration with photodetector using reactive ion beam etching”, J. Lightwave Technol., vol. 12, pp. 742-748, 1994.
[63] A. Plais, C. Chaumont, F. Mallecot, F. Gaborit, D. Carpentier, J. Jacquet, A. Leroy, J. Charil, and H. Nakajima, “Integrated BRS/Ridge transmit receive device fabrication using well established III-V material technology”, 10th Intern. Conf. On Indium Phosphide and Related Materials, vol. 11-15, pp. 273-275, 1998.
[64] H. Shoji, K. Otsubo, T. Fujii, and H. Ishikawa, “Calculated performances of 1.3 -μm vertical cavity surface-emitting lasers on InGaAs ternary substrates”, IEEE J. Quantum. Electron., vol. 33, pp. 238-245, 1997.
[65] C. L. Chua, R. L. Thomton, D. W. Treat, and C. Dunnrowicz, “Low-threshold InAlGaAs vertical-cavity surface-emitting laser arrays using transparent contacts”, Appl. Phys. Letts., vol. 72, pp. 1001-1003, 1998.
[66] M. Linnik, and A. Christou, ”Design and performance of a vertical cavity surface emitting laser based on III-V quaternary semiconductor alloys for operation at 1.55μm”, IEEE Trans. Electron. Device, vol. 48, pp. 2228-2237, 2001.
[67] O. B. Shchekin, and D. G. Deppe, ”Low-threshold high-T0 1.3-μmInAs quantum-dot lasers due to p-type modulation doping of the active region”, IEEE Photon. Techenol. Letts., vol. 14, pp. 1231-1233, 2002.
[68] C. W. Wilmsen, H. Temkin, and L. A. Coldren, in Vertical-Cavity Surface-Emitting Lasers, Cambridge Press, United Kingdom (1999).
[69] M.Born and E. Wolf, Principles of Optics, 3rd ed Oxford:Pergamon, 1965.
[70] T. Mukaihara, N. Yamanaka, N. Iwai, T. Ishikawa and A. Kasukawa:”1.3um GaInAsP lasers integrated with butt-coupled waveguide and high reflective semiconductor/air Bragg reflector (SABAR) ”Electron. Lett., vol. 34, pp.882-8841998.
[71] D. Olego, T. Y. Chang, E. Silberg, E. A. Caridi, and A. Pinczuk, “Compositional dependence of band-gap energy and conduction-band effective mass of In1-x-yGaxAlyAs lattice matched to InP”, Appl. Phys. Lett., vol. 41, pp. 476-478, 1982.
[72] C. H. Henry, L. F. Johnson, R. A. Logan, and D. P. Clarke, “Determination of the refractive index of InGaAsP epitaxial layers by mode line luminescence spectroscopy”, IEEE J. Quantum Electron., vol. QE-21, pp.1887-1892, 1985.
[73] T. E. Sale, in Vertical Cavity Surface Emitting Lasers, Wiley, New York (1995).
[74] S. Hansmann, H. walter, H. Hillmer, and H. Burkhard, “Static and dynamic properties of InGaAsP-InP distributed Bragg feedback lasers-Adetailed comparison between experiment and theory”, J. Quantum Electron., vol. 30, pp. 2477-2483, 1994.
[75] S. Rapp, J. Piprek, K. Streubel, J. Andre, and J. Wallin, “Temperature sensitivity of 1.54 μm vertical-cavity lasers with an In-based Bragg reflector”, J. Quantum Electron., vol. 33, pp. 1839-1845, 1997.
[76] F. Delorme, S. Grosmaire, A. Gloukhian, and A. Ougazzaden, “High power operation of widely tunable 1.55 μm distributed Bragg reflector laser”, Electron. Lett., vol. 33, pp. 210-211, 1997.
[77] J. Debray, N. Bouche, G. L. Roux, R. Raj, and M. Quillec, “Monolithic vertical cavity device lasing at 1.55 μm InGaAlAs system”, Electron. Lett., vol. 33, pp. 868-869, 1997.
[78] O. Blum, J. F. Klem, K. L. Lear, G. A. Vawter, and S. R. Kurtz, “Optically pumped, monolithic, all-epitaxila 1.56 μm vertical cavity surface emitting laser using Sb-based reflectors”, Electron. Lett., vol. 33, pp. 1878-1880, 1997.
[79] G. Almuneau, F. Genty, L. Chusseau, N. Bertru, B. Fraisse, and J. Jacquet, “Molecular bean epitaxial growth of 1.3 μm high-reflectivity AlGaAsSb/AlAsSb Bragg mirror”, Electron. Lett., vol. 33, pp. 1227-1228, 1997.
[80] G. W. Taylor and P. R. Claisse, “Transport solution for SCH quantum-well laser diode”, IEEE J. Quantum Electron., vol. 31, pp. 2133-2141, 1995
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔