(3.227.235.183) 您好!臺灣時間:2021/04/13 10:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳利傑
研究生(外文):Li-Chieh Chen
論文名稱:金屬(鋁)/鐵電薄膜(鋯鈦酸鉛)/絕緣層(氧化鉿)/半導體場效電晶體之製作及電性分析
論文名稱(外文):The fabrication and electrical properties of metal(Al)/ferroelectric (Pb(Zr0.53Ti0.47)O3 )/insulator(HfO2)/semiconductor field-effect transistors
指導教授:李雅明李雅明引用關係
指導教授(外文):Joseph Ya-min Lee
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:82
中文關鍵詞:鐵電材料電晶體記憶窗效應
外文關鍵詞:FerroelectricTransistormemory windowMFIS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本實驗中我們成功的製作金屬/鐵電薄膜(PZT)/絕緣體(HfO2)/半導體(p-type)電晶體,並對其電性作分析。在基本的電性量測方面,我們得到臨界電壓為1.51 V,次臨界斜率是346 mV/decade以及電子遷移率為20 cm2/V-sec,已顯現出電晶體的基本特性。但是次臨界斜率太大,表示電晶體的開關能力不理想,以及電子遷移率過低。
這兩個問題則需要更進一步的探討。另外我們也得到在閘極電場強度500 kV/cm時,閘極的電流密度為3x10-5 A/cm2。
在電晶體的記憶體效應方面,由IDS-VGS特性曲線的量測結果,我們可發現IDS-VGS曲線走向在掃瞄振幅電壓小於5.5 V時為逆時針走向,而在掃瞄振幅電壓大於5.5 V時為順時針走向,這表示在當外加電壓小於5.5 V時,IDS-VGS走向是鐵電極化在主導;當外加電壓大於5.5 V時,電荷注入的影響大於鐵電極化,因此IDS-VGS走向是電荷注入在主導。同時,在鐵電極化的主導下,記憶窗於掃瞄電壓振幅5 V時最大,為0.25 V,在載子注入效應的主導下,掃瞄電壓振幅15 V時記憶窗為3.83 V。在排除載子注入的效應之後,我們可以得到1.7 V的記憶窗。這與 PZT 薄膜極化效應最大理論飽和值相等。另外,我們也經由IDS-VDS的量測得到分別以PZT和HfO2為鐵電層和絕緣層的MFIS結構電晶體的 ION和 IOFF 電流,Ion電流為26μA,Ioff電流為0.25μA,ION和IOFF比值大約為10,作為一個 FRAM 應該已足夠。

Metal-ferroelectric-insulator-semiconductor field effect transistors (MFISFETs) using an Al/Pb(Zr0.53,Ti0.47)O3 (PZT)/HfO2/Si structure were successfully fabricated. The threshold voltage is 1.51 V and the electron mobility is 20 cm2/V-s. The gate current density is 3x10-5 A/cm2 at 500 kV/cm. The IDS-VGS characteristics depend on both the polarization of the PZT layer and the injected charges into the insulator layer. When the polarization effect is dominant, the memory window is 0.25 V at an applied gate voltage of 4 V. The drain current can be controlled by a poling voltage indicating memory effect.

目 錄
第一章 緒論
1.1 動態隨機存取記憶體的發展趨勢………………………1 1.2 鐵電材料的電性…………………………………………1
1.3 鐵電材料鋯鈦酸鉛在記憶體上的應用…………………2 1.4 鐵電材料於FRAM的發展現況…………………………3
1.5 MFIS結構的應用…………………………………………5
第二章 鋯鈦酸鉛(PZT)的理論
2.1 鐵電材料的結構…………………………………………6
2.2 鐵電材料的特徵…………………………………………7
2.3 鐵電材料的開關理論……………………………………8
2.4 鐵電材料的可靠度………………………………………9
第三章 金屬/鐵電薄膜PZT/絕緣體/半導體 電晶體及電容的製備
3.1 設備與製程…………………………………..…………11
3.2射頻磁控濺鍍法的簡介………………………...………11
3.3 HfO2薄膜電容器的製備………………………….……12
3.3.1基板及絕緣層的製作…………………...…………..12
3.3.2 HfO2薄膜的成長……………………………………12
3.3.3 PZT 薄膜的製作………………...…………………13
3.3.4上下電極的製作………………….…………………14
第四章 M(Al)/F(PZT)/I(HfO2)/Si 場效電晶體的特性量測
4.1 電晶體的基本電性分析………………………………22
4.1.1 IDS-VDS Curve的特性…………………………….…22
4.1.2 臨界電壓(Threshold Voltage VT)…………………22
4.1.3 次臨界斜率(Sub-threshold Slope)……………...…23
4.1.4 遷移率的探討(Mobility)……………………….…25
4.1.5 漏電流 (Leakage Current) ……………………...…28
4.2 電晶體的記憶體效應…………………………………29
4.2.1 IDS-VGS 曲線飄移與走向的探討………….…….…29
4.2.2 ION 與 IOFF 電流…………………….………..………34
第五章 結論

Reference
第一章
[1] 鄭晃忠, “高密度鐵電性記憶體之趨勢發展”, 電子月刊, 第五卷第五期, p.137.
[2] 賴明駿, “極大型積體電路之鐵電材料”, 電子月刊, 第五卷第六期, p. 94.
[3] B. W. Shen., G. Chung, I. C. Chen, D. J. Coleman, Jr., P. S. Ying, R. McKee, M. Yashiro, C. W. Teng., “Scalability of a Trench Capacitor Cell for 64 Mbit DRAM”, IEEE IEDM, Tech Digest, pp. 27-30, 1989.
[4] 何彬明, “FeRAM產品化的崎嶇道路”, 電子月刊, 第五卷第三期, p.166.
[5] T. Kada, “Process and device technologies for 1 Gbit dynamic random-access memory cells”, Vac. Sci. Technol. B, Vol.13, Issue 6, 1995.
[6] T. Eimori, “A newly designed planar stacked capacitor cell with high dielectric constant film for 256Mbit DRAM”, IEEE IEDM, pp. 631-634, 1993.
[7] T. Sumi, “Ferroelectric nonvolatile memory technology and its applications”, Jpn. J. Appl. Phys., Vol. 35, No. 2B, pp. 1516-1520, 1996.
[8] S. L. Miller and P. J. McWhorter, “Physics of the ferroelectric nonvolatile memory field effect transistor”, J. Appl. Phys., Vol. 72, Issue 12, pp. 5999-6010, 1992.
[9] R. Moazzami, C. Hu, W.H. Shepherd, “A ferroelectric DRAM cell for high-density NVRAM’s”, IEEE ELECTRON DEVICE LETTERS, Vol.11, No.10, pp. 454 —456, 1990.
[10] 李雅明, “鐵電記憶元件”, 電子月刊, 9月號, 1996.
[11] S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Integration of ferroelectric thin films into nonvolatile memories”, Journal of Vacuum Science & Technology A., Vol. 10, Issue 4, pp. 1554-1561, 1992.
[12] T. Nakamur and Y. Fujimor, “Fabrication Technology of Ferroelectric Memories”, Jpn. J. Appl. Phys., Vol. 37, part. 1, N0. 3B, pp. 1325-1327, 1998.
[13] K. Kwang-Ho, Member, IEEE, “Metal-Ferroelectric-Semiconductor (MFS) FET’s Using LiNbO3/Si (100) Structures for Nonvolatile Memory Application”, IEEE Electron Device Letters, Vol. 19, Issue. 6, pp. 204-206, 1998.
[14] K. Sugibuchi, Y. Kurogi, and N. Endo, “Ferroelectric field-effect memory device using Bi4Ti3O12 film”, J. Appl. Phys., Vol.46, Issue 7, pp. 2877-2881, 1975.
[15] N. A. Basit and H. K. Kim, “Growth of highly oriented Pb(Zr,Ti)O3 films on MgO-buffered oxidized Si Substrates and its application to ferroelectric nonvolatile memory field-effect transistors “, Appl. Phys. Lett., Vol. 73, Issue 26, pp. 3941-3943, 1998.
[16] H. N. Lee, M. H. Lim, and Y. T. Kim, “Characteristics of Metal / Ferroelectric / Insulator / Semiconductor Field Effect Transistors Using a Pt/SrBi2Ta2O9 /Y2O3 /Si Structure”, Jpn. J. Appl. Phys., Vol.37, part 1, No.3B, pp. 1107-1109, 1998.
[17] T. Hirai, Y. Fujisaki, and K. Nagashima, “Preparation of SrBi2Ta2O9 Film at Low Temperatures and fabrication of a Metal / Ferroelectric /Insulator /Semiconductor Field Transistor Using Al/SrBi2Ta2O9/CeO2/Si (100) Structures”, Jpn. J. Appl. Phys., Vol. 36, Part 1, No. 9B, pp. 5908-5911, 1997.
[18] 沈士傑, “淺談快閃式記憶體(Flash Memory)之發展”, 電子月刊, 1996.
第二章
[1] L. L. Hench and J. K. West, J. Wiley and Sons, ”Principle of electronic ceramics”
New York,1990.
[2] H. M. Dulker, P. D. Beal, and J. F. Scott, “Fatigue and switching in ferroelectric memories : theory and experiment”, J. Appl. Phys., Vol.68, pp. 5783-5791, 1990.
[3] Y. Xu, “Ferroelectric Materials and Their Applications”, pp.25-31.
[4] Y. Xu, “Ferroelectric Materials and Their Applications”, pp.7-11.
[5] J. F. Scott, “Device Physics of Ferroelectric Thin-Film Memories”, Jpn. J. Appl. Phys., Vol. 38, Part 1, No. 4B, pp.2272-2274, 1999.
[6] G. W. Dietz, M. Schumacher, and R. Waser, “Leakage Current in Ba0.7Sr0.3TiO3 Thin Films for Ultrahigh-Density Dynamic Random Access Memories “, J. Appl. Phys., Vol. 82, Issue 5, pp. 2359-2361, 1997.
[7] B. A. Baumert, L. H. Chang, A. T. Matsuda, T. L. Tsai, C. J. Tracy, R. B. Gregory, P. L. Fejes, N. G. Cave, and W. Chen, “Characterization of Sputtered Barium Strontium Titanate and Strontium Titanate Thin Films”, J. Appl. Phys., vol. 85, Issue 2, pp.2558-2566, 1997.
[8] C. M. Wu Phd. Thesis, “The Study of (Ba,Sr)TiO3 Thin Films Deposited on LaNiO3 Electrode by RF Magnetron Sputtering for DRAMs Applications”, MSE of NTHU, 1997.
[9] I. K. Yoo and S. B. Desu, “Leakage current mechanism and accelerated unified test lead zirconate thin film capacitor”, CH080-0-7803-0465-9/9253.00@IEEE
[10] H. Hu and S. B. Ktupanidhi, “Current-voltage characteristics of ultrafine-grained ferroelectric Pb(Zr,Ti)O3 thin film”, J. Mater. Res., Vol. 9, No. 6, 1994.
[11] J. F. Scott, C. A. Araujo, B. M. Melnick, and L. D. McMillan, “Quantitative measurement of space-charge effects in lead zirconate-titanate memories”, J. Appl. Phys., Vol.70, Issue1, pp. 382-388, 1991.
[12] C. Sudhama, A. C. Campbell, P. D. Maniar, R. E. Jones, R. Moazzami, and C. J. Mogab, “A model for electrical conduction in metal-ferroelectric-metal thin film capacitor”, J. Appl. phys., Vol.75, Issue. 2, pp. 1014-1022, 1994.
[13] N. Inoue and Y. Hayashi, “Effect of imprint on operation and reliability of ferroelectric random acess memory(FeRAM)”, IEEE Transactions on Electron Devices, Vol. 48, pp. 2266-2272, 2001.
第三章
[1] Y. Nakao, “Study on Pb-based ferroelectric thin films prepared by sol-gel method for memory application”, Jpn. J. Appl. Phys., Vol. 33, No. 9B, pp. 5265-5267, 1994.
[2] K. Aoki, “Dielectric Properties of (111) and (100) Lead-Zirconate-Titanate Films Prepared by Sol-Gel Technique”, Jpn. J. Appl. Phys. , Vol. 33, No. 9B, pp. 5155-5158, 1994.
[3] W. J. Lin, “Growth and fatigue properties of pulsed laser deposited PLZT thin films with [001] preferred orientation”, J. Mat. Sci.: MATERIALS IN ELECTRONICS, Vol. 7, pp. 409-417, 1996.
[4] T. F. Tseng, R. P. Yang, and K. S. Liu, “Ferroelectric properties of PLZT films deposited on Si3N4-coated Si substrates by pulsed laser deposition process”, Appl. Phys. Lett., Vol. 70, Issue 1, pp. 46-48, 1997.
[5] H. Nakasima, “Electrical properties for capacitors of dynamic random access memory on PLZT thin films by metaorganic chemical vapor deposition”, Jpn. J. Appl. Phys., Vol.33, No. 9B, pp. 5139-5142, 1994.
[6] C.M. Foster, “Single-crystal PZT thin films prepared by metal-organic chemical vapor deposition:Systematic compositional variation of electronic and optical properties”, J. Appl. Phys., Vol. 81, Issue 5, pp. 2349-2357, 1997.
[7] H. Miki and Y. Ohji, “Uniform Ultra-Thin Pb(Zr,Ti)O3 Films Formed by Metal-Organic Chemical Vapor Deposition and Their Electrical Characteristics”, Jpn. J. Appl. Phys., Vol. 33, No. 9B, pp. 5143-5146, 1994.
[8] E. Cattan, “Structure control of PZT buffer layers produced by magnetron sputtering”, Appl. Phys. Lett., Vol. 70, Issue 13, pp. 1718-1720, 1997.
[9] O. Auciello, A. I. Kingon, and S. B. Krupanidhi, “Sputter Synthesis of Ferroelectric Films and Heterostructures”, MAT. RES. BULLETIN, p.25, 1996.
[10] L. Wang, “Properties of PbZrTiO3 Thin Films Preapred By R.F. Magnetron Sputtering and Heat Treatment”, Mat. Res. Bull., Vol. 25, pp.1495-1501, 1990.
[11] V. Chikarmane, “Effects of post-deposition annealing ambient on the electrical characteristics and phase transformation kinetics of sputtered lead zirconate (65/35) thin film capacitors”, J. Vac. Scl. Technol. A, Vol. 10, Issue 4, 1992.
[12] S. M. SZE, VLSI Technology, Second Edition, pp. 466-513.
[13] S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era Vol. 1
第四章
[1] Y. Makoto, “MOSFET Carrier Mobility Model Based on Gate Oxide Thickness, Threshold Voltage and Gate Voltages”, Solid State Electronics, Vol. 39, No. 10, pp. 1515-1518, 1996.
[2] E. Tokumitsu, R. I. Nakamura, and H. Ishiwara, “Nonvolatile memory operations of metal-ferroelectric-insulator-semiconductor (MFIS) FETs using PLZT/STO/Si(100) structures”, IEEE Electron Device Letters, vol. 18, No. 4, pp.160-162, 1997.
[3] F. Y. Chen, Y. K. Fang, and M. J. Sun, “Experimental characterization and modeling of a ferroelectric bulk channel field effect transistor with nonvolatile memory characteristics”, Appl. Phys. Lett., Vol. 69, pp.812-814, 1996.
[4] Y. Watanabe, “Epitaxial all-perovskite ferroelectric field effect transistor with a memory retention”, Appl. Phys. Lett., Vol. 66, pp.1770-1772, 1995.
[5] K. Nagashima, T. Hirai, H. Koike, Y. Fujisaki and Y. Tarui, “Characteristics of Metal/Ferroelectric/Insulator/Semiconductor Structure Using SrBi 2Ta 2O 9 as the Ferroelectric Material”, Jpn. J. Appl. Phys. , Vol. 35, pp.1680-1682, 1996.
[6] K. Sugibuchi, Y. Kurogi, and N. Endo, “.Ferroelectric field-effect memory device using Bi[sub 4]Ti[sub 3]O[sub 12] film”, J. Appl. Phys., Vol. 46, pp. 2877-2881, 1975.
[7] V. Chikarmane, C. Sudhama, J. Kim, J. Lee,and asch, “Effects of post-deposition annealing ambient on the electrical characteristics and phase transformation kinetics of sputtered lead zirconate titanate (65/35) thin film capacitors “, J. Vac. Sci. Technol. A, 10, pp.1562-1568, 1992.
[8] R. Gastaldi, D. Novosel, M. Dallabora, and G. Casagrande, “A 1-Mbit CMOS EPROM with enhanced verification”, IEEE J. Solid State Circuits, Vol. 23, pp. 1150-1156, 1988.
[9] Y. Lin, B. Zhao, H. Peng, Z. Hao, B. Xu, Z. Zhao, and J.Chen, “Asymmetry in the hysteresis loop of Pb(Zr0.53Ti0.47)O3/SiO2/Si structures”, J. Appl. Phys., Vol. 86, pp.4467-4472, 1999.
[10] C. L. Benjamin, K. Nan-hui, and Y. L. Joseph, “A study on the capacitance--voltage characteristics of metal-Ta[sub 2]O[sub 5]-silicon capacitors for very large scale integration metal-oxide-semiconductor gate oxide applications “,J. Appl. Phys., Vol. 85, pp. 4087-4090, 1999.
[11] D. M. Fleetwood and Senior Member, IEEE Transactions of Nuclear Science, Vol. 39, 1992.
[12] Y. Watanabe, “Energy band diagram of ferroelectric heterostructures and its application to the thermodynamic feasibility of ferroelectric FET “, Solid State Ionics, Vol. 108, pp. 59-65, 1998.
[13] 鍾維烈, “鐵電體物理學”, 1998
[14] A. Chin, M. Y. Yang, C. L. Sun ,and S. Y. Chen, “Stack Gate PZT/Al2O3 One Transistor Ferroelectric Memory”, IEEE Electron Device Letters, Vol. 22, pp. 336-338, 2001.
[15] M. Y. Tang, S. B. Chen, Albert Chin, C. L. Sun, B. C. Lan, and S. Y. Chen, “One-transistor PZT/Al2O3, SBT/Al2O3 and BLT/Al2O3 stacked gate memory”, IEEE IEDM, pp. 36.3.1-36.3.4, 2001.
[16] L. Tinkai, T. H. Sheng, U. Bruce, Y. Hong, S. Lisa, E. Dave, O. Yoshi, M. Jer-shen, and J. J. Lee, “Fabrication and characterization of a Pb5Ge3O11 one-transistor-memory device”, Appl. Phys. Lett., Vol. 79, pp. 1661-1663, 2001.
[17] W. Zhu,T.P. Ma, T. Tamagawa, Y. Di, J. Kim, R. Carruthers, M. Gibson, T. Furukawa, “HfO2 and HfAlO for CMOS: Thermal Stability and Current Transport”, Electron Devices Meeting, IEDM Technical Digest. International, pp. 20.4.1 -20.4.4, 2-5 Dec. 2001.
[18] H. Jongin, W. S. Han, H. Seungbum, S. Hyunjung, N. Kwangsoo, “Fabrication and investigation of ultrathin, and smooth Pb(Zr,Ti)O3 films for miniaturization of microelectronic devices”, J. Appl. Phys., Volume 92, Issue 12, pp. 7434-7441, 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔