(3.236.228.250) 您好!臺灣時間:2021/04/17 14:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李文彥
研究生(外文):Wen-Yen Lee
論文名稱:1伏互補式金氧半電晶體低電壓端至端運算放大器設計
論文名稱(外文):Design of 1v CMOS low-voltage rail-to-rail operational amplifiers
指導教授:龔正龔正引用關係
指導教授(外文):JGONG
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:69
中文關鍵詞:rail-to -rail
外文關鍵詞:端至端
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著人們要求便利的特性許多攜帶型電子商品問世,低功率低電壓已是不可擋的趨勢,而運算放大器為類比電路中之一基本單元。所以設計低電壓端至端運算放大器為設計低電壓電路系統的基礎工作。
我們提出了兩種適用於超低電壓端至端運算放大器的電路結構。兩個電路都是以複合式輸入級為基礎,就是將N型和P型電晶體結合。第一個低電壓端至端運算放大器使用標準0.35毫米CMOS製程,原理是利用偵測輸入電壓的直流共模訊號作為調整輸入訊號直流偏壓的依據,當輸入級的電壓變動時我們也改變原先的直流偏壓,如此一來就能達到輸入級端至端和常數電導的要求。然後我們選擇了緩衝級的輸出級來作為輸出級,使得輸出電壓的擺幅也能達到端至端。這個運算放大器的單位增益頻寬為1.9MHz,迴轉率為0.8V/μs,晶片面積 0.089 mm2,頻寬-功率比為23.31 MHz/mW。有些規格比文獻上同樣架構的1V端至端運算放大器還好。另一個端至端運算放大器使用標準0.25毫米CMOS製程,我們將幾個關鍵的電晶體操作於弱反轉區,利用電晶體操作於弱反轉區時,電流和電導成線性關係,再利用電流鏡的技巧,來達成輸入級端至端和常數電導的要求。而回授式class-AB的輸出級除了能操作於低電壓使輸出能達到端至端外,也能精確的控制靜態電流,以降低功率的消耗。這個運算放大器的單位增益頻寬為1.8MHz,低頻增益為81dB,頻寬-功率比為32.73 MHz/mW。我們也將實驗數據和相關的運算放大器做了比較與討論。

The constraints on the design of CMOS operational amplifiers with rail-to-rail input and output range for extremely low supply voltage operation,are addressed. Two design approaches for amplifiers based on complementary input differential pairs are presented. The first,fabricated in a standard 0.35um CMOS process,realizes a feedforward action to accommodate the common-mode (CM) component of the input signals to the amplifiers input range. Then we choose the class-AB output stage to ensure the output swing is rail-to-rail. This Op-amp yields an unit-gain frequency of 1.9MHz,slew rate of 0.8V/us,chip area 0.089 mm2,and bandwidth-power ratio of 23.31 MHz/mW. Some specifications are even better than the of the proposed 1V rail to rail Op-amp. Another Op-amp,fabricated in a standard 0.25um CMOS process, lets several critical transistors in weak inversion region. The feedback class-AB is used to allow further lowering of operating voltage. This Op-amp had an unit-gain frequency of 1.8MHz,and DC gain of 81dB with bandwidth-power ratio of 32.73 MHz/mW. Experimental results are provided and the corresponding performance are discussed and compared.

1.Introduction………………………………………………………..…...1
2.Considerations and Design Issues of Low-voltage Op-amps..4
2.1 Classification of CMOS low-voltage
circuits………………..5
2.2 Design issues of rail-to-rail input
stage…………………………....6
2.2.1 Complementary input pairs…...
………………………….....7
2.2.2 MOSFETs work in weak inversion………………….
……...9
2.2.3 The constant-gm control
circuits………………………......10
2.2.4 The summing circuit with folded cascoded
structure…..….11
2.3 Design issues of the rail-to-rail output
stage……………………..….13
2.3.1 Class AB output
stages…………………………………….14
2.3.2 Output stage with feedforward class-AB
control………….15
2.3.3 Output stage with feedback class-AB
control……………..18
2.4 Summary…………………………………………………………
… 22
3. Design of 1V constant gm rail-to-rail Op-amp fabricated with a standard 0.35um CMOS process………………………...24
3.1 Design of the rail-to-rail input
stage…………………………..25
3.1.1 The principle of the rail-to-rail input
stage…...…………...25
3.1.2 Design of the rail-to-rail input
stage…………….……...27
3.1.3 Level-Shift Current Generator……………..
……….28
3.1.4 The entire rail-to-rail input
stage……………..………..30
3.2 Design of the rail-to-rail output
stage…………………….………....32
3.3 Chip organization and layouts…………………..
……………..….33
3.4 Conclusions……………………………………………………….
…34
4. Design of 1V constant gm rail-to-rail Op-amp fabricated with a standard 0.25um CMOS process…………………….35
4.1 Design of the rail-to-rail input stage………………..36
4.2 Design of rail-to-rail output
stage…………………………....39
4.3 Overall topology and frequency
compensation………………..….43
4.4 Chip organization and layouts……….…………………….
…45
5. Test Systems and The Measured Results……………………...48
5.1 The test result of the 1V rail-to-rail Op-amp
fabricated with a standard 0.35um CMOS
process……………………………………………..48
5.2 The test result of the 1V rail-to-rail Op-amp
fabricated with a standard 0.25um CMOS process….
……………………………...…………...57
6. Conclusions and Future Work………………………..…...65

1. Ron Hogervorst and Johan H. Huijsing,“Design of low-voltage Low-power operational Amplifier Cells,” Kluwer Academic Publishers, 1996
2. Fan You, Sherif H.K. Embabi,J.Francisco Duque-Carrillo, and Edgar Sanchez-Sinencio, “An Improvement Tail Current Source for Low Voltage Applications,” IEEE Journal of Solid-Stage Circuits, Vol.32,No.8,August 1997
3. 3.J. Francisco Duque-Carrillo, Jose M. Valverde, and Raquel Perez-Aloe, “Constant-Gm Rail-to-Rail Common-Mode Range Input Stage with Minimum CMRR Degration,” IEEE Journal of Solid-Stage Circuits, Vol.28, No.6, June 1993
4. Duque-Carrillo, J.F.; Ausin, J.L.; Torelli, G.; Valverde, J.M.; Deminguez, M.A.; “1-V rail-to-rail operational amplifiers in standard CMOS technology”
IEEE Journal of Solid-State Circuits, Volume: 35 Issue: pp.: 33 —44, Jan 2000
5. T.A.F. Duisters and E.C. Dijkmans,“A —90dB THD rail-to-rail input opamp using a new local charge pump in CMOS, ” IEEE J. Solid-State Circuits,vol.33, pp.947-955, July 1998
6. B.J. Blalock,P.E. Allen,and G.A. Rincon-Mora,“Designing 1-V op amps using standard digital CMOS technology,” IEEE Trans. Circuits and Systems II,vol.45,pp. 769-779,July 1998.
7. P.J. Crawley and G.W. Roberts,“High-swing MOS current mirrors with arbitrarily high output resistance,” Electron. Lett.,vol.28,pp.361-363,1992
8. Eduard Sackinger and Walter Guggenbuhl,“A High-Swing,High-Impedance MOS Cascode Circuit,” IEEE Journal of Solid-State Circuits,Vol. 25,No. 1,February 1990
9. P.R. Gray and R.G. Meyer, “Analyses and Design of Analog Integrated Circuits” Wiley, New York, USA 1984
10. RAMIREZ-ANGULO, J., CARVAJAL, R.G. TOMBS, J., and TORRALBA, A.: “ A simple technique for op-amp continuous-time 1V supply operation ”, Electron. Lett.,35,(4),pp. 263-264, 1999
11. Fan You; Embabi, S.H.K.; Sanchez-Sinencio, E.; “Low-voltage class AB buffers with quiescent current control ”, Solid-State Circuits, IEEE Journal of , Volume: 33 Issue: 6 , pp. 915 -920 , Jun 1998
12. De Langen, K.-J.; Huijsing, J.H.; “Compact low-voltage power-efficient operational amplifier cells for VLSI” , Solid-State Circuits, IEEE Journal of,Volume: 33 Issue: 10,pp: 1482 —1496,Oct 1998
13. Torralba, A.; Carvajal, R.G.; Ramirez-Angulo, J.; Tombs, J.; Galan, T.; “ Class AB output stages for low voltage CMOS opamps with accurate quiescent current control by means of dynamic biasing”, Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th IEEE International Conference on,Volume: 2,pp. 967 -970 vol.2,2001
14. RAMIREZ-ANGULO.,J., TORRALBA, A., and CARVAJAL, R.G.: “ Low-voltage CMOS amplifiers with wide input-output voltage swing based on a novel scheme ”, to be published in IEEE Trans. on CAS-II,CASI-47(5), 2000
15. Shu-Yuan Chin; Chung-Yu Wu; “A 10-b 125-MHz CMOS digital-to-analog converter (DAC) with threshold-voltage compensated current sources ”, Solid-State Circuits, IEEE Journal of , Volume: 29 Issue: 11, pp. 1374 —1380, Nov 1994
16. Bahmani, F.; Fakhraie, S.M.; Khakifirooz, A.;
“A rail-to-rail, constant-Gm, 1-volt CMOS opamp”, Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on,Volume: 2,pp.669 -672 vol.2, 2000
17. Hogervorst, R.; Tero, J.P.; Eschauzier, R.G.H.; Huijsing, J.H.; “A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries”, Solid-State Circuits Conference, 1994. Digest of Technical Papers. 41st ISSCC., 1994 IEEE International,pp.244 —245,Feb 1994 16-18
18. Torralba, A.; Carvajal, R.G.; Martinez-Heredia, J.; Ramirez-Angulo, J.; “Class AB output stage for low voltage CMOS op-amps with accurate uiescent current control”, Electronics Letters , Volume: 36 Issue: 21 pp.1753 —1754, 12 Oct 2000
19. Sakurai, S.; Ismail, M.; “ Robust design of rail-to-rail CMOS operational amplifiers for a low power supply voltage”, Solid-State Circuits, IEEE Journal of,Volume: 31 Issue: 2,pp.146 —156,Feb 1996
20. Changku Hwang; Motamed, A.; Ismail, M.; “Universal constant-gm input-stage architectures for low-voltage op amps ”,Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on , Volume: 42 Issue: 11,pp.886 —895,Nov 1995
21. Ferri, G.; Sansen, W.; “A rail-to-rail constant-gm low-voltage CMOS operational transconductance amplifier ”, Solid-State Circuits, IEEE Journal of , Volume: 32 Issue: 10,pp. 1563 —1567,Oct 1997
22. Phillip E. Allen ;Douglas R. Holberg ; “CMOS Analog Circuit Design”, Cygnal Integrated Products, Inc.
23. G.G. Miler, “Test Procedures for Operational Amplifier”, Application Note 508, Harris Linear & Data Acquisition Products, 1977. Harris Semiconductor Corporation, Box 883, Melbourne, FL 32901
24. Fonderie, J.; Maris, M.G.; Huijsing, J.H.; “1-volt operational amplifier with rail-to-rail input and output ranges”, Solid-State Circuits Conference, 1989. Digest of Technical Papers. 36th ISSCC., 1989 IEEE International , pp. 64 -65, 291,15-17 Feb 1989
25. Fonderie, J.; Huijsing, J.H.; “An Operational Amplifier With 1V Rail-to-rail Multi-path-driven Output Stage”, Solid-State Circuits Conference, 1991. Digest of Technical Papers. 38th ISSCC., 1991 IEEE International , pp. 276 —277,13-15 Feb 1991
26. Dingtzay Chen; Hongchin Lin; “An IV rail-rail low-power CMOS op-amp”, Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on, Volume: 1 , pp. 309 —312,2002
27. Stockstad, T.; Yoshizawa, H. “A 0.9 V, 0.51 μA rail-to-rail CMOS operational amplifier ”, Custom Integrated Circuits, 2001, IEEE Conference on. , pp. 467 —470,2001
28. Wu, W.-C.S.; Helms, W.J.; Kuhn, J.A.; Byrkett, B.E.; “Digital-compatible high-performance operational amplifier with rail-to-rail input and output ranges ”,Solid-State Circuits, IEEE Journal of , Volume: 29 Issue: 1,pp. 63 —66,Jan 1994
29. Coban, A.L.; Allen, P.E.; “A 1.75 V rail-to-rail CMOS op amp ”,Circuits and Systems, 1994. ISCAS '94., 1994 IEEE International Symposium on , Volume: 5 ,pp. 497 -500 vol.5,30 May-2 Jun 1994
30. Kumar Thandri S, B.; Silva-Martinez, J.; Maloberti, F.; “A feedforward compensation scheme for high gain wideband amplifiers”, Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th IEEE International Conference on , Volume: 3 , pp. 1115 -1118 vol.3,2001
31. Jie Yan; Geiger, R.L.; “Fast-settling amplifier design using feedforward compensation technique”, Circuits and Systems, 2000. Proceedings of the 43rd IEEE Midwest Symposium on , Volume: 1, pp: 494 -497 vol.1 , 2000
Delage, J.-F.; Sawan, M.; “Lead compensation to improve the stability of a two stage rail-to-rail CMOS opamp ”,Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th IEEE International Conference on , Volume: 2, pp: 561 -564 vol.2 , 2001

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔