|
[1] M. F. Insana, R. F. Wagner, B. S. Garra, D. G. Brown, and T. H. Shawker, “Analysis of Ultrasound image texture via generalized Rician statistics,” Opt. Eng., vol. 25, pp. 743-748, 1986. [2] U. Reath, D. Schlaps, and B. Limberg, “Diagnostic accuracy of computerized B-scan texture analysis and conventional ultrasonography in diffuse parenchymal and malignant liver disease,” J. Clin. Ultrasound, vol. 13, pp. 87-99, 1985. [3] N. M. Botros, “ A microprocessor-based pattern recognition algorithm for in-vivo tissue differentiation,” J. Clin. Eng., vol. 13, pp.115-120, 1988. [4] R. Momenan, M. H. Loew, M. F. Insana, R. F. Wagner, and B. S. Garra, “Application of pattern recognition techniques in ultrasound tissue characterization,” 10th Int. Conf. Pattern Recognition, vol. 1, pp. 608-612, 1990. [5] M. F. Insana, R. F. Wagner, B. S. Garra, R. Momenan, and T. H. Shawker, “Pattern recognition methods for optimizing multivariate tissue signatures in diagnostic ultrasound,” Ultrasound. Imaging, vol. 8, pp165-180, 1986. [6] B. S. Garra, M. F. Insana, T. H. Shawker, R. F. Wagner, M. Bradford and M. Russell, “Quantitative ultrasonic detection and classification of diffuse liver disease comparison with human observer performance,” Invest. Radiology, vol. 24, pp.196-203, 1989. [7] R. F. Wagner, M. F. Insana, and G. Brown, “Unified approach to the detection and classification of speckle texture in diagnostic ultrasound,” Opt. Eng., vol. 25, pp. 743-748, 1986. [8] R. Momenan, M. F. Insana, R. F. Wagner, B. S. Garra, and M. H. Loew, “Application of clutter analysis and unsupervised learning to multivariate tissue characterization,” J. Clin. Eng., vol. 13, pp.455-461, 1988. [9] R. Momenan, R. F. Wagner, B. S. Garra, M. H. Loew, and M. F. Insana, “Image staining and differential diagnosis of ultrasound scans based on the Mahalanobis distance,” IEEE Trans. Medical Imaging, vol. 11, pp. 37-47, June 1994. [10] K. Ogawa, M. Fukushima, K. Kubota, and N. Hisa, “Computer-aided Diagnostic System for Diffuse Liver Diseases with Ultrasonography by Neural Network,” IEEE Trans. Nuclear Science, vol. 45, no. 6, pp. 3069-3074, Dec. 1998. [11] G. J. W Simon, E. E. Jane, B. Nigal, E. H. Margaret, E. B. Joe, and W. David, “An ultrasound scoring system for the diagnosis of liver disease in cystic fibrosis,” Journal of Hepatology, vol. 22, pp. 513-521, 1995. [12] G. F. Vawter and H. Shwachman, “Cystic fibrosis in adults: an autopsy study,” Pathol. Annu., vol. 14, pp.357-382, 1979. [13] N. I. Sandford, P. Walsh, C. Matis, H. Baddeley and L. W. Powell, “Is ultrasonography useful in the development of diffuse parenchyma liver disease,” Gastroenterology, vol. 9, pp. 186-191, 1985. [14] C. M. Wu, Y. C. Chen and K. S. Hsieh, “Texture features for classification of ultrasonic liver images,” IEEE Trans. Medical Imaging, vol. 11, pp. 141-152, June 1992. [15] C. M. Wu and Y. C. Chen, “Multi-threshold dimension vector for texture analysis and its application to liver tissue classification,” Pattern Recognition, vol. 26, no. 1, pp. 137-144, Jan. 1993 [16] A. Mojsilović, M. Popović, S. Marković, and M. Krstić, “Characterization of Visually Similar Diffuse Diseases from B-Scan Liver Images Using Nonseparable Wavelet Transform,” IEEE Trans. Medical Imaging, vol. 17, no. 4, pp. 541-549, Aug. 1998. [17] Y. C. Chen and W. L. Lee, “Texture Classification Using Multiresolution Fractal Feature Vector,” Proc. 4th Asian Conf. On Computer Vision, pp. 204-209, 2000. [18] W. L. Lee, Y. C. Chen and K. S. Hsieh, “Ultrasonic liver tissues classification by fractal feature vector based on M-band wavelet transform,” The 2001 IEEE International Symposium on Circuits and Systems, Vol. 2, pp. 1-4, 2001. [19] W. L. Lee, Y. C. Chen and K. S. Hsieh, “Robust calculation of fractal dimension of images and its applications to classiflication of ultrasonic liver images and texture images,” The 2002 IEEE International Symposium on Circuits and Systems, Vol. 2, pp. 656-659, 2002. [20] H. Sujana, S. Swarnamani, and S. Suresh, “ Application of artificial neural networks for the classification of liver lesions by image texture parameters,” Ultrasound in Med. & Biol., vol. 22, no. 9, pp. 1177-1181, 1996. [21] S. Pavlopoulos, E. Kyriacou, D. Koutsouris, K. Blekas, a. Stafylopatis, and P. Zoumpoulis, “Fuzzy neural network-based texture analysis of ultrasonic images,” IEEE Engineering in Medicine and Biology, vol. 19, no. 1, pp. 39-47, Jan.-Feb., 2000. [22] Y. M. Kadah, A. A. Farag, J. M. Zurada, A. M. Badawi, and A. M. Youssef, “Classification Algorithms for Quantitative Tissue Characterization of Diffuse Liver Disease from Ultrasound Images,” IEEE Trans. Medical Imaging, vol. 15, no. 4, pp. 466-478, Aug. 1996. [23] B. J. Oosterveld, J. M. Thijssen, P. C. Hartman, and G. J. E. Rosenbusch, “Detection of diffuse liver disease by quantative echography: dependence on a priori choice of parameters,” Ultrasound in Med. & Biol. vol.19, no.1 pp.21-25, 1993. [24] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Texture features for image classification,” IEEE Trans. Systems, Man and Cybernetics, vol. 3, no. 6, pp.610-621, 1973. [25] C. M. Wu and Y. C. Chen, “Statistical fature matrix for texture analysis,” CVGIP, vol. 54, No. 5, September, pp407-419, 1992. [26] P. C. Chen and T. Pavlidis, “Segmentation by texture using correlation,” IEEE Trans. Pattern Anal. and Machine Intell., vol. 5, pp. 64-69, Jan. 1983. [27] R. Chellapa, “Two-dimensional discrete Gaussian Marks random field models for image processing,” Pattern Recognition, vol. 2, pp. 79-112, 1985. [28] K. I. Laws, Texture image segmentation, Ph.D. dissertation, Image Processing Inst., Univ. of Southern California, 1980. [29] Campbell, F.W. and Robson, J.G., “Application of Fourier Analysis to the Visibility of Gratings,” J. Physilogy, vol.197, pp.551-566, 1968. [30] De Valois, R.L. Albrecht D.G., and Thorell, L.G., “Spatial-Frequency Selectivity of Cells in Macaque Visual Cortex,” Vision Research, vol.22, pp.545-559,1982. [31] B. B. Mandelbrot, Fractal Geometry of Nature. Freeman Press, San Francisco, 1982. [32] Pentland, A.P., “Fractal based description of natural scences,” IEEE Trans. Pattern Anal. and Machine Intell., vol. PAMI-6, pp.661-674, 1984. [33] Pentland, A.P., “Shading into texture,” Artificial Intelligence, vol. 29, pp.147-170, 1986. [34] C. C. Chen, J. S. Daponte and M. D. Fox, “Fractal feature analysis and classification in medical imaging,” IEEE Trans. Medical Imaging, vol. 6, pp. 133-142, June 1989. [35] S. C. Liu and S. Chang, “Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification,” IEEE Trans. Image Processing, vol. 6, no. 8, Aug. 1997. [36] A. Rosenfeld, Multiresolution Techniques in Computer Vision, New York: Springer-Verlag, 1984. [37] P.P. Vaidyanathan, “Multirate digital filters, filter banks, polyphase network, and applications,” in Pro. IEEE, vol. 78, Jan. 1990, pp.56-93. [38] M. Vettterli and C. Herley, “Wavelet and filter banks: Theory and design,” IEEE Trans, Signal Processing, vol. 40, pp.2207-2232, Sept. 1992. [39] M. Frisch and H. Messer, “Detection of a transient signal of unknown scaling and arrival time using the discrete wavelet transform,” in Proc. Int. Conf. Acoust., Speech, Signal Processing, vol. 42, pp.595-603, March 1994. [40] S. Mallat, “Zero-crossings of a wavelet transform,” IEEE Trans. Inform. Theory, vol. 37, pp. 1019-1033, July 1991. [41] S. Kadambe and G. F. Boudraux-bartels, “Application of the wavelet transform for pitch detection of speech signals,” IEEE Trans. Inform. Theory, vol. 38, pp.917-924, Mar. 1992. [42] D. M. Healy and J. B. Weaver, “Two applications of wavelet transforms in magnetic resonance imaging,” IEEE Trans. Inform. Theory, vol. 38, pp.840-860, Mar. 1992. [43] S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. and Machine Intell., vol. 11, pp. 674-693, July 1989. [44] T. Chang and C. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Processing, vol. 2, pp.429-441, Oct. 1993. [45] A. Laine and J. Fan, “Texture classification by wavelet packet signatures,” IEEE Trans. Pattern Anal. and Machine Intell., vol. 15, pp. 1186-1191, Nov. 1993. [46] M. Unser, “Texture classification and segmentation using wavelet frames,” IEEE Trans. Image Processing, vol. 4, no. 11, pp. 1549-1560, Nov. 1995. [47] D. Hubel and T.Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex”, J. Physilogy, vol.160, pp.551-566, 1962. [48] D. A. Pollen and S. F. Ronner, “Visual cortical neurons as localized spatial frequency filter.” IEEE Trans. Sys., Man, Cyber., vol.13, pp.551-566, 1983. [49] J.M. Keller, S. Chen, and R.M. Crowniver, “Texture description and segmentation through fractal geometry,” CVGIP, 45, pp.150-166, 1989. [50] S. Chen, J.M. Keller, and R.M. Crowniver, “On the calculation of fractal features from images,” IEEE Trans. Pattern Anal. and Machine Intell., vol. 15, no. 10, pp. 1087-1090, Oct. 1993. [51] N. Sarkar and B. B. Chaudhuri, “An efficient differential box-counting approach to compute fractal dimension of image,” IEEE Trans. Systems Man and Cybernetics, vol. 24, pp. 115-120, Jan. 1994. [52] X. C. Jin, S. H. Ong, and Jayasooriah, “A pracital method for estimating fractal dimension,” Pattern Recognition Letter 16, 411-418 (1995). [53] J. Feng, W-C Lin, and C-T Chen, “Fractional box counting approach to fractal dimension estimation,” Proceedings, 13th ICPR, vol. II, pp.854-858, 1996. [54] S. Buczkowski, S. Kyriacos, F. Nekka, and L. Cartilier, “The Modified Box-Counting Method: Analysis of Some Characteristic parameters,” Pattern Recognition, vol. 31, No. 4, pp. 411-418, 1998. [55] M. K. Biswas, T. Ghose, S. Guha, and P. K. Biswas, “Fractal dimension estimation for texture images: A parallel approach,” Pattern Recognition Letter 19, 309-313 (1998). [56] P. Asvestas, G. K. Matsopoulos, K. S. Nikita, “Estimation of fractal dimension of images using a fixed mass approach,” Pattern Recognition Letter 20, 347-354 (1999). [57] A. K. Bisoi and J. Mishra, “On calculation of fractal dimension of images,” Pattern Recognition Letter 22, 631-637 (2001). [58] T. Lundahl, W. J. Ohely, S. M. Kay, and R. Siffert, “Fractional Brownian Motion: A Maximum Likelihood Estimator and Its Application to Image Texture,” IEEE Trans. Medical Imaging, vol. 5, no, 3, pp. 152-161, Sep. 1986. [59] J. T. M. Verhoeven and J. M. Thijssen, “Potential of fractal analysis for lesion detection in echographic images,” Ultrasonic Imaging, vol.15, pp.304-323, 1993. [60] G. Strang and T. Nguyen, Wavelets and Filter Banks. MA: Wellesley-Cambridge, 1996. [61] C. S. Burrus, R. A. Goponath, and H. Guo, Introduction to wavelets and wavelet transform: a primer. New Jersey: Prentice-Hall, 1998. [62] R. A. Goponath, E. Odegard, and C. S. Burrus, “Optimal wavelet representation of signals and the wavelet sampling theorem,” IEEE Trans. Circuits and systems. II, vol. 41, no. 4, pp. 262-277, April 1994. [63] M. K. Tsatsanis and G. B. Giannakis, “ Principal component filter banks for optimal multiresolution analysis,” IEEE Trans. Signal Processing, vol. 43, no.8, pp.1766-1777, Aug. 1990. [64] P. Steffen, P. N. Heller, R. A. Goponath, and C. S. Burrus, “Theory of Regular M-Band Wavelet Bases,” IEEE Trans. Signal Processing, vol. 41, No. 12, pp. 3497-3511, Dec. 1993. [65] O. Rioul and M. Vetterli, “Wavelets and signal processing,” IEEE Signal Processing Mag., vol. 8, no. 4, pp. 11-38, Oct. 1991 [66] M. K. Tsatsanis and G. B. Giannakis, “Principal Component Filter Banks for Optimal Multiresolution Analysis,” IEEE Trans. Signal Processing, vol. 43, No. 8, pp. 1766-1777, Aug. 1995. [67] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, San Diego, 1998. [68] Y. Chitre and A. P. Dhawan, “M-band wavelet discrimination of nature textures,” Pattern Recognition, vol. 32, pp. 773-789, 1999. [69] P. P. Vaidaynathan, Multirate Systems and Filter Banks. New Jersey: Prentice-Hall, 1993 [70] I.Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Information Theory, vol. 36, pp.961-1005, Sept. 1990. [71] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. New York: Wiley, 1973. [72] M. Nadler and E. P. Smith, Pattern Recognition Engineering. New York: Wiley, 1993 [73] K. Fukunaga, Introduction to Statistical Pattern Recognition. Academic Press, San Diego, 1990. [74] M. T. Hagan, H. B. Demuth, and M.H. Beale, Neural Network Design, Boston, MA: PWS Publishing, 1996. [75] D. F. Specht, “Probabilistic neural network,” Neural Networks, vol. 3, no. 1, pp. 109-118, Jan. 1990. [76] D. F. Specht, “Probabilistic neural network and the polynomial adaline as complementary techniques for classification,” IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 111-121, Mar. 1990. [77] P. Burrascano, “Learning vector quantization for the probabilistic neural network,” IEEE Trans. Neural Networks, vol. 2, pp. 458-461, 1991. [78] E-Liang Chen, Pau-Choo Chung, Ching-Liang Chen, Hong-Ming Tsai, and Chein-I Chang, “An automatic diagnostic system for CT liver image classification,” IEEE Trans. Biomedical Engineering, vol. 45, no. 6, June 1998. [79] P. Brodatz, Texture: A Photographic Album for Artists and Designers. New York: Dover, 1966. [80] A. K. Jain and F. Farrokhnia, “Unsupervised Texture Segmentation Using Gabor Filters,” Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 14-19, 1990. [81] A. K. Jain and F. Farrokhnia, “Unsupervised texture segmentation using Gabor filters,” Pattern Recognition, vol. 24, no. 12, pp.1167-1186, 1991. [82] T. Randen and J. H. Husoy, “Mutichannel filtering for image texture segmentation,” Optical Eng., vol.33, pp.2617-2625, Aug. 1994. [83] P. J. Scheuer, “Pathologic types of hepatic tumors,” in Liver cell carcinoma, P. Bannasch, D. Keppler, and G. Weber, Eds. New York: Kluwer-Academic, p.18, 1989. [84] J. H. Lefkowitch, “Pathologic diagnosis of liver disease,” in Hepatology: a Textbook of liver Disease, D. Zakim and T. D. Boyer, W. B. Saunders, Eds. London, England, p.719, 1990. [85] T. Randen and J. H. Husoy, “Filtering for Texture Classification: A Comparative Study,” IEEE Trans. Pattern Anal. and Machine Intell., vol. 21, no. 4, pp. 291-310, April 1999.
|