(3.236.231.14) 您好!臺灣時間:2021/04/15 07:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李宜虎
研究生(外文):Yi-Hu Lee
論文名稱:新型感應馬達轉子磁場導向最大轉矩控制策略
論文名稱(外文):A New Rotor-Flux Oriented Maximum Torque Control Strategy for Induction Motor Drives
指導教授:潘晴財
指導教授(外文):Ching-Tsai Pan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:121
中文關鍵詞:感應馬達轉子磁場導向最大轉矩柔性啟動四象限運作
外文關鍵詞:induction motorrotor flux orientedmaximum torquesoft startingfour-quadrant operation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:340
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
感應馬達之轉子磁場導向控制理論已發表了三十多年,目前市面上亦已有相關產品銷售;它最大的好處是可以獲得瞬時轉矩響應,而達到如同分激式直流伺服馬達之快速動態響應;然而如何兼顧考慮獲得最大之轉矩,則仍有改進的空間,本論文即基於上述考慮以提出一新型感應馬達轉子磁場導向最大轉矩控制策略,俾進一步獲得更佳之動態性能。
本論文主要貢獻可分為下列五點:首先,在第三章推導出鼠籠式感應馬達穩態運轉模式下之真正最大電磁轉矩解析式,不必像現有文獻必須作一些假設條件;其次,利用驅動感應馬達之反流器最大允許線電流與輸出電壓之限制條件,導出感應馬達各轉速區段之真正最大轉矩與其對應之滑差頻率曲線,然後求得符合轉子磁場導向控制之對應直軸電流控制新策略;此新控制策略不僅具有轉子磁場導向控制之優點,亦同時可獲得最大之轉矩控制以進一步改進其動態響應,此外將該策略利用前述電磁轉矩解析式推導至四象限運作模式,可以避免正反轉矩命令變換時造成直軸定子電流的不連續性,從而獲得快速動態響應;第三點貢獻則為配合本文之新控制策略提出一轉子及定子時間常數之估測方法,可以線上修正因為溫度效應所造成之影響;第四點貢獻是配合本文之新控制策略,提出一柔性啟動控制策略,可以在限定電壓和電流情況下獲得快速與安全啟動之效果。最後在硬體實作方面,並實際建構一全數位化之感應馬達驅動器雛形系統,量測其穩態與暫態性能,以驗證本論文所提控制策略之有效性。
The rotor flux oriented control theory of induction motors has been presented for more than thirty years and there are also related commercial products available in the market. Its main characteristic lies in the instantaneous torque response to achieve as fast dynamic response as a separately excited dc motor drive. However, in spite of the fast torque response, maximization of the resulting torque is still a subject for further improvement. In fact, it is the main motivation of this thesis to propose a new rotor flux oriented maximum torque control strategy for the induction motor drives.
Major contributions of this thesis may be summarized as follows. First, a closed form truly maximum torque analytic expression is derived without neglecting the stator resistance and imposing the constraint such as the rotor flux oriented control condition. Second, a closed form analytic expression of the corresponding slip angular frequency as a function of rotor speed is also derived. Based on the previous results, a new rotor flux oriented maximum torque control strategy is then presented to further increase the dynamic response speed under four-quadrant operation. Third, to reduce the effect of variations of the stator and rotor time constants, an on-line estimation method is proposed to correct the time constants. Fourth, a soft starting control is presented to build up the initial rotor flux to achieve very fast starting response without violating the current and voltage constraints of the inverter. Finally, a prototype is also constructed to implement the proposed control strategy by using a digital signal processor, namely TMS320F2407. Both simulation and experimental results verify the validity of the proposed control strategy.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 XI
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 本論文之貢獻 2
1.4 本論文之內容概述 3
第二章 傳統轉子磁場導向控制與單位安培最大轉矩
控制之比較 5
2.1 前言 5
2.2 感應馬達之動態模型 5
2.3 傳統RFOC之基本原理與弱磁控制 13
2.4 傳統RFOC與MTPAC之比較 21
第三章 新型感應馬達轉子磁場導向最大轉矩控制 25
3.1 前言 25
3.2 穩態模式下之真正最大電磁轉矩解析式推導 25
3.3 新型最大轉矩控制策略 46
3.4 轉子與定子時間常數估測與校正 52
3.5 啟動控制策略 62
第四章 模擬與實作結果 68
4.1 前言 68
4.2 新型控制策略之模擬結果 68
4.3 實體電路製作 80
4.4 實測結果 86
第五章 結論 101
參考文獻 103
附錄 A DSP程式列表 111
附錄 B 作者與口試委員合影留念 121
[1] T. A. Lipo, “Recent progress in the development of solid-state ac motor drives”, IEEE Trans. on Power Electronics, Vol. 3, No. 2, April 1988, pp. 105-117
[2] P. C. Sen, “Electric motor drives and control-past, present, and future”, IEEE Trans. on Ind. Elec., Vol. 37, No. 6, December 199, pp. 562-575
[3] B. K. Bose, “Recent advances in power electronics”, IEEE Trans. on Power Electronics, Vol. 7, No. 1, January 1992, pp. 2-16
[4] N. Matsui, “Recent trends in ac motion control”, IEEE IECON’92, 1992, pp. 25-30
[5] K. Kamiyama, T. Ohmae, and T. Sukegawa, “Application tends in ac motor drives”, IEEE IECON’92, 1992, pp. 31-36
[6] B. K. Bose, “Variable frequency drives technology and applications”, IEEE ISIE’93, 1993, Budapest, pp. 1-18
[7] H. H. Huffman, “Introduction to solid-state adjustable speed drives”, IEEE Trans. on Ind. Appl., Vol. 26, No. 4, July/August 1990, pp. 671-678
[8] D. A. Jarc and D. W. Novotny, “A graphical approach to ac drive classification”, IEEE Trans. on Ind. Appl., Vol. IA-23, No. 6, November/December 1987
[9] I. D. Hassan, “Specifying adjustable-speed ac drive systems and currently available industry standards”, IEEE Trans. on Ind. Appl., Vol. IA-23, No. 4, July/August 1987
[10] R. Krishnan, “Selection critria for servo motor drives”, IEEE Trans. on Ind. Appl., Vol. IA-23, No. 2, March/April, 1987
[11] B. K. Bose, Power electronic and ac drives, Prentice-Hall, Englewood cliffs, New Jerse, 076322, 1986
[12] P. C. Krause and C. H. Thomas, “Simulation of symmetrical induction machinery”, IEEE Trans. on Power Apparatus and System, Vol. PAS-84, No. 12, November 1965, pp. 1038-1053
[13] J. A. Mallick, “Modeling of solid rotor turbo generators”, IEEE Trans. on Power Apparatus and systems, Vol. PAS-97, No. 5, January/February 1978, pp. 269-291
[14] Peter Vas, Electrical machines and drives, Claredon press. OXFORD, 1992
[15] W. Leonhard, Control of electrical drives, Springer-Verlag, Berlin-Heidelberg, New York, Tokyo, 1985
[16] A. B. Plunkett, J. D. Datre, and T. A. Lipo, “Synchronous control of a static ac induction motor drive”, IEEE Trans. on Ind. Appl., Vol IA-15, No. 4, July/August 1979, pp. 430-437
[17] A. Nabae, K. Otsuka, H. Uchino and R. Kurosawa, “An approach to flux control of induction motor operated with variable-frequency power supply”, IEEE Trans. on Ind. Appl., Vol. IA-16, No. 3, May/June 1980, pp. 342-350
[18] R. Gabriel, W. Leonhard, and C. Nordby, “Field-oriented control of a standard ac motor using microprocessors”, IEEE Trans. on Ind. Appl., Vol. IA-16, No. 2, March/April 1980, pp. 186-192
[19] D. W. Novotny and R D. Lorenz, “Introduction to field orientation and high performance ac drives”, in Tutorial Course Rec., IEEE-IAS Annual Meeting Conf. Rec., 1985, Section 1 and 6.
[20] A. Derdiyok, “Simple method for speed and rotor resistance estimation of induction machines”, IEE Proc. on Electric Power Applications, Vol. 150, May 2003, pp. 289-294
[21] R.E. Araujo, D.S. Freitas, J.J. Goncalves, “An instrument for measurement of induction motor drives based on phasor and modelling techniques”, IEEE Trans. on Energy Conversion, Vol. 14, Sept. 1999, pp. 704-711
[22] M.S. Nait Said, M.E.H. Benbouzid, “Induction motors direct field oriented control with robust on-line tuning of rotor resistance”, IEEE Trans. on Energy Conversion, Vol. 14, Dec. 1999, pp. 1038 -1042
[23] D. Telford, M.W. Dunnigan, B.W. Williams, “On-line identification of induction machine electrical parameters for vector control loop tuning”, IEEE Trans. on Industrial Electronics, Vol. 50, April 2003, pp. 253-261
[24] G. Bartolini, A. Pisano, P. Pisu, “Simplified exponentially convergent rotor resistance estimation for induction motors”, IEEE Trans. on Automatic Control, Vol. 48, Feb 2003, pp. 325 -330
[25] H.A. Toliyat, M.S. Arefeen, K.M. Rahman, D. Figoli, “Rotor time constant updating scheme for a rotor flux-oriented induction motor drive”, IEEE Trans. on Power Electronics, Vol. 14, Sept. 1999, pp. 850-857
[26] R. Marino, S. Peresada, P. Tomei, “Global adaptive output feedback control of induction motors with uncertain rotor resistance”, IEEE Trans. on Automatic Control, Vol. 44, May 1999, pp. 967-983
[27] F. Alonge, F. D''Ippolito, G. Ferrante, F.M. Raimondi, “Parameter identification of induction motor model using genetic algorithms”, IEE Proc. on Control Theory and Applications, Vol. 145, Nov. 1998, pp. 587-593
[28] Jang-Hwan Kim, Jong-Woo Choi, Seung-Ki Sul, “Novel rotor-flux observer using observer characteristic function in complex vector space for field-oriented induction motor drives”, IEEE Trans. on Industry Applications, Vol. 38, Sept.-Oct. 2002, pp. 1334-1343
[29] Xing Yu, M.W. Dunnigan, B.W. Williams, “A novel rotor resistance identification method for an indirect rotor flux-orientated controlled induction machine system”, IEEE Trans. on Power Electronics, Vol. 17, May 2002, pp. 353 -364
[30] Seok Ho Jeon, Kwang Kyo Oh, Jin Young Choi, “Flux observer with on-line tuning of stator and rotor resistances for induction motors”, IEEE Trans. on Industrial Electronics, Vol. 49, June 2002, pp. 653-664
[31] J.W. Finch, D.J. Atkinson, P.P. Acarnley, “Full-order estimator for induction motor states and parameters”, IEE Proc. on Electric Power Applications, Vol. 145, May 1998, pp. 169-179
[32] H.-J. Shieh, K.-K. Shyu, F.-J. Lin, “Adaptive estimation of rotor time constant for indirect field-oriented induction motor drive”, IEE Proc. on Electric Power Applications, Vol. 145, March 1998, pp. 111-118
[33] J. Faiz, M.B.B. Sharifian, “Different techniques for real time estimation of an induction motor rotor resistance in sensorless direct torque control for electric vehicle”, IEEE Trans. on Energy Conversion, Vol. 16, March 2001, pp. 104-109
[34] W.-J. Wang, C.-C. Wang, “Composite adaptive position controller for induction motor using feedback linearisation”, IEE Proc. Control Theory and Applications, Vol. 145, Jan. 1998, pp. 25-32
[35] R. Marino, S. Peresada, P. Tomei, “On-line stator and rotor resistance estimation for induction motors”, IEEE Trans. on Control Systems Technology, Vol. 8, May 2000, pp. 570-579
[36] K. Akatsu, A. Kawamura, “Sensorless very low-speed and zero-speed estimations with on-line rotor resistance estimation of induction motor without signal injection”, IEEE Trans. on Industry Applications, Vol. 36, May-June 2000, pp. 764-771
[37] K. Akatsu, A. Kawamura, “On-line rotor resistance estimation using the transient state under the speed sensorless control of induction motor”, IEEE Trans. on Power Electronics, Vol. 15, May 2000, pp. 553-560
[38] M.S.N. Said, M.E.H. Benbouzid, A. Benchaib, “Detection of broken bars in induction motors using an extended Kalman filter for rotor resistance sensorless estimation”, IEEE Trans. on Energy Conversion, Vol. 15, March 2000, pp. 66-70
[39] M.A. Ouhrouche, “Vector control of an induction motor with on-line rotor resistance identification”, IEEE Canadian Conf. on Electrical and Computer Engineering, Vol. 2, May 1999, pp. 1121-1125
[40] G. Kang, J. Jung, K. Nam, “A new rotor time constant update rule using stator flux estimates for an induction motor”, in IEEE Ind. Applicat. Soc. Annu. Meeting. Conf. Rec., Vol. 2, Oct. 1999, pp. 1278-1283
[41] X. Xu, R. De Donker, and D. W. Novotny, “Stator flux orientation control of induction machines in the field weakening region,” in IEEE Ind. Applicat. Soc. Annu. Meeting Conf. Rec., 1988, pp. 437-443.
[42] Myoung-Ho Shin, Dong-Seok Hyun, Soon-Bong Cho, “Maximum torque control of stator-flux-oriented induction machine drive in the field-weakening region”, IEEE Trans. on Industry Applications, Vol. 38, Jan.-Feb. 2002, pp. 117-122
[43] S. H. Kim and S. K. Sul, “Maximum torque control of an induction machine in the field weakening region,” IEEE Trans. on Industry Applications, Vol. 31, Jul/Aug. 1995, pp. 787-794
[44] Sang-Hoon Kim, Seung-Ki Sul, “Voltage control strategy for maximum torque operation of an induction machine in the field-weakening region”, IEEE Trans. on Industrial Electronics, Vol. 44, Aug. 1997, pp. 512-518
[45] P.L. Jansen, R.D. Lorenz, D.W. Novotny, “Observer-based direct field orientation: analysis and comparison of alternative methods”, IEEE Trans. on Industry Applications, Vol. 30, July-Aug. 1994, pp. 945-953
[46] F. Yusivar, T. Kihara, M. Sato, S. Wakao, T. Yamamura, “|Iq| added flux weakening strategy for the rotor flux oriented control of a sinusoidal PWM VSI-fed induction motor”, IEEE Annu. Conf. on Ind. Elect. Soc., Vol. 2, Nov. 2001, pp. 1160-1165
[47] L. Harnefors, K. Pietilainen, L. Gertmar, “Torque-maximizing field-weakening control: design, analysis, and parameter selection”, IEEE Trans. on Industrial Electronics, Vol. 48, Feb. 2001, pp. 161-168
[48] F. Briz, A. Diez, M.W. Degner, R.D. Lorenz, ”Current and flux regulation in field-weakening operation [of induction motors]”, IEEE Trans. on Industry Applications, , Vol. 37, Jan. 2001, pp. 42-50
[49] L. Harnefors, K. Pietilainen, L. Gertmar, “Optimum-seeking field weakening control of induction motor drives”, Eighth International Conf. on Power Electronics and Variable Speed Drives, Sept. 2000, pp. 176-181
[50] Seung-Ho Song, Jong-Woo Choi, Seung-Ki Sul, “Transient torque maximizing strategy of induction machine in field weakening region”, IEEE Annu. Rec. on Power Electronics Specialists Conference, Vol. 2, May 1998, pp. 1569-1574
[51] R.S. Wieser, “Optimal rotor flux regulation for fast-accelerating induction machines in the field-weakening region”, IEEE Trans. on Industry Applications, Vol. 34, Sept. 1998, pp. 1081 -1087
[52] Dae Hee Choi, Soon Bong Cho, Dong Seok Hyun, “Improved torque response by tuning of the magnetizing inductance under field weakening operation region [of induction motors]”, IEEE Annu. Meeting Conf. Rec. on Industry Applications, Vol. 1, Oct. 1997, pp. 418-425
[53] G. Espinosa-Perez, P.J. Nicklasson, R. Ortega, “Control of induction motors in the field weakening region”, IEEE Proc. Conf. on Decision and Control, Vol. 3, Dec. 1995, pp. 2151-2152
[54] X. Xu and D. W. Novotny, “Selecting the flux reference for induction machine drives in the field weakening region,” in IEEE Ind. Applicat. Soc. Annu. Meeting Conf. Rec., 1991, pp. 361-367.
[55] D. W. Novotny, T. A. Lipo, Vector control and dynamics of ac drives, Clarendon Press. 1996
[56] R. Jotten and H. Schierling, “Control of the induction machine in the field weakening range”, in Proc. IFAC 1983, pp. 297-304.
[57] O. Wasynczuk, S.D. Sudhoff, K.A. Corzine, J.L. Tichenor, P.C. Krause, I.G. Hansen, L.M. Taylor, “A maximum torque per ampere control strategy for induction motor drives”, IEEE Trans. on Energy Conversion, Vol. 13, June 1998, pp. 163-169
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔