(3.237.20.246) 您好!臺灣時間:2021/04/15 13:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李建昇
研究生(外文):Jian-Shen, Li
論文名稱:應用於橋式整流器前端電路之IGBT輔助轉換器設計與製作
論文名稱(外文):Design and Implementation of an Auxiliary IGBT Converter for Conventional Diode Rectifier Front-ends
指導教授:鄭博泰
指導教授(外文):Po-Tai, Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:111
中文關鍵詞:主動濾波能量回生馬達性負載
外文關鍵詞:Active filterRe-generationInverter-fed motor drivesDAXC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來隨著半導體功率元件與電力電子技術的進步,以二極體、閘流體等元件所組合成的前端整流電路已廣泛的使用於各式工業負載與民生必需用品中。此種前端整流電路具非線性負載的特性,導致電源端產生大量之諧波電流,因而造成電力系統中之諧波電壓及諧波電流的污染,導致電力品質下降。
為了解決諧波污染的問題,電力公司由輸配電系統的設計與保護協調方面來著手提升整個電力品質,同時也要求業界配合,採取各項補償措施,降低其所使用的負載對電力品質的影響。近年來,許多國家亦紛紛提出有關諧波問題的管制規範,如美國的IEEE-519,歐洲的IEC1000-3-2,及IEEC1000-3-4等。分別針對工業戶層次的三相負載或是消費者層次的低電壓小型負載提出管制要點。
另一方面,若以二極體或閘流體作為一變頻馬達驅動器之前端整流電路時,當馬達處於煞車狀態時,將有再生能量授至直流鏈,造成直流鏈電壓之上升,而危急周遭之電路元件。
為了解決諧波及再生能量的問題,本論文提出一以橋式整流器與IGBT輔助轉換器為主要架構之前端整流電路系統(簡稱DAXC系統),此系統具有並聯式主動濾波器與主動式前端整流器之功能,能夠改善負載啟動時所產生之電流諧波與負載在能量時再生能量之問題。本論文內容包含了DAXC系統之理論分析,模擬結果與實作結果。最後,本論文針對DAXC系統運用於可調速馬達驅動器之狀態進行模擬,並對其運轉效能加以分析、討論。

Due to the progress of power semiconductor technologies and power electronics technologies, applications of power converters have increased significantly in recently years, such as adjustable speed drive and switching power supplies. Most of these applications require diode rectifiers or thyristor rectifies to convert electric power from AC to DC. The nonlinear nature of the front-end rectifiers draws serious harmonic current from the utility grid, which results in harmonic distortion of current and voltage in the power system.
Several regulations have been passed at the commercial and industrial levels to reduce harmonic distortion, such as IEEE-519 of USA, and IEC-1000-3-2 of Europe. To meet these standards, the related technologies of harmonic filter have been proposed.
When the diode and thyristor are used as the AC/DC front-end rectifiers in the inverter-fed motor drive systems, they can not pump the re-generation energy back to the utility grid as the motor brakes. Thus the DC bus voltage will increase and the surrounding circuits may be damaged by over-voltage.
In this thesis, a re-generative front-end system based on the diode bridge rectifier and an auxiliary IGBT converter (abbreviated as DAXC) is presented. By utilizing the active filter control techniques, the auxiliary IGBT converter compensates the harmonic current of the diode rectifier load to reduce the harmonic current distortion. Besides, the IGBT converter provides the function of re-generation. This thesis includes the operation principles of the proposed DAXC system. Both simulation results and laboratory test results will be provided to validate the proposed system. Design example based on adjustable speed drive system is also provided.

誌謝 Ⅰ
中文摘要 Ⅱ
Abstract Ⅲ
List of Contents Ⅴ
List of Figure Ⅷ
List of Table XV
Chapter 1. Introduction 1
1.1 Harmonic Filtering 1
1.2 Re-generation 3
1.3 Motivation and Objectives 4
1.4 Organization of the thesis 5
Chapter 2. Literature Review 6
2.1 Introduction 6
2.2 Shunt active filters 6
2.3 Active front-end converter 11
2.4 Current regulator 13
2.4.1 Hysteresis current regulator 13
2.4.2 Synchronous Frame PI current regulator 15
2.4.3 Predictive current regulator 16
2.5 Summary 18
Chapter 3. Principle of Operation 19
3.1 Introduction 19
3.2 The DAXC controller 20
3.2.1 Active filter control principle 20
3.2.2 DC bus voltage control principle 23
3.2.3 Current regulator 24
3.4 Summary 27
Chapter 4. Simulation Results 29
4.1 Introduction 29
4.2 DAXC system simulation results without voltage distortion 31
4.3 DAXC system simulation results with voltage distortion 42
4.4 Summary 55
Chapter 5. Laboratory Test Results 57
5.1 Introduction 57
5.2 DAXC system laboratory test results 59
5.3 Summary 71
Chapter 6. Conclusion
Reference 79
Appendix A 82
A.1 Introduction 82
A.2 DAXC system simulation results in a 43 KVA load system 84
A.3 Summary 96
A.3.1 Operational loss estimation of the IGBT converter 98
Appendix B 100
B.1 Signal conditioning circuit for voltage measurement 100
B.2 Signal conditioning circuit for current measurement 100
B.3 The Phase Lock Loop (PLL) circuit 100
B.4 The DSP PWM signals control circuit 101
B.5 The IGBT gate driver circuit 101
B.6 The laboratory test bench 105
Appendix C 107

[1] J.-S. Lai and T. S. Key, “ Effectiveness of Harmonic Mitigation Equipment for Commercial Office Buildings ”, IEEE Transactions on Industry Applications, Vol. 33, No. 4, July/Aug. 1997, pp. 1104-1110.
[2]M. El-Habrouk, M.K. Darwish, and P. Mehta, “ Active Power Filters: A Review ”, IEE Proceedings-Electric power applications, Vol. 147, No. 5, Sept. 2000, pp. 403-413.
[3] H. Akagi, “ New Trends in Active Filters for Power Conditioning ”, IEEE Transactions on Industry Applications, Vol. 32, No. 6, Nov./Dec. 1996, pp. 1312-1322.
[4]S. Bhattacharya and D. Divan, “ Active Filter Solutions for Utility Interface of Industrial Loads ”, Proceedings of the 1996 International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth, 1996, Vol. 2, 1995, pp. 1078-1084.
[5]B. Singh, K. Al-Haddad, and A. Chandra, “ A Review of Active Filters for Power Quality Improvement ”, IEEE Transactions on Industrial Electronics, Vol. 46, No. 5, Oct. 1999, pp. 960-971.
[6] C. D. Marque, “ A Comparison of Active Power Filter Control Methods in Unbalanced and Nonsinusoidal Conditions ”, Industrial Electronics Society, 1998. IECON '98. Proceedings of the 24th Annual Conference of the IEEE, Vo1.1, 31 Aug./Sep. 1998, pp. 444 —449.
[7] K. J. P. Macken, K. M. H. A De Brabandere, J. J. L Driesen, and R. J. M. Belmans, “ Evaluation of Control Algorithms for Shunt Active Filters Under Unbalanced and Nonsinusoidal Conditions ”, Power Tech Proceedings, 2001 IEEE Porto , Vol. 2, 2001, .Page(s): 6.
[8] H. Akagi, Y. Tsukamoto, and A. Nabae, “ Analysis and Design of an Active Power Filter Using Quad-series Voltage Source PWM Converters ”, IEEE Transactions on industry applications, Vol. 26, No. 1, Jan./Feb. 1990, pp. 93-98.
[9]D. W. Chumg, H. M. Ryu, Y. M. Lee, L. W. kang, S. K. sul, S. J. kang, J. H. Song, J. S. Yoon, K. H. Lee, and J. H. Suh, “ Drive Systems for High-Speed Gearless Elvators ”, IEEE Industry Applications Magazine, Sept./Oct. 2001, pp. 52-56.
[10]G. Brando, A. D. Pizzo “ A Predictive Control Technique for PWM-Rectifier in Vector Controlled Induction Motor Drives ”, Industrial Electronics, 2002. ISIE 2002. Proceedings of the 2002 IEEE International Symposium on, Vol. 4, 2002, pp. 1196 —1200.
[11]J. Zeng , O. Diao, Y. Ni, S. Cheng, B. Zhang, “ A Novel Current Controller for Active Power Filter Based On Optimal Voltage Space Vector ” power Electronics and Motion control conference,2000. Proceeding, PIEMC 2000. The Third International, Volume: 2,2000 pp686-691 vol2
[12]D. M. Brod, and D. W. Novonty, “ Current Control of VSI-PWM Inverters ”, IEEE Transactions on Industry Applications, VOL. IA-21, NO. 4, May/June 1985 pp.562-570.
[13]T. G. Habetler, “A Space Vector-based Rectifier Regulator for AC/DC/AC Converters”, IEEE Transactions on Power Electronics, Vol. 8, No. 1, January 1993, pp.30-36.
[14]IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power Systems, IEEE Standard 519, 1992.
[15]P. J. Randewijk, J.H.R. Enslin , “ Inverting DC Traction Substation With Active Power Filtering Incorporated, ” Power Electronics Specialists Conference, 1995. PESC '95 Record., 26th Annual IEEE, Vol.1, 18-22 Jun 1995 PP. 360 -366

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔