(3.238.174.50) 您好!臺灣時間:2021/04/18 01:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張智勝
研究生(外文):ChihSheng Chang
論文名稱:大能量人眼安全雷射
論文名稱(外文):Large-energy eye-safe laser generation
指導教授:黃衍介黃衍介引用關係
指導教授(外文):Prof. Yen-Chieh Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:52
中文關鍵詞:人眼安全鈮酸鋰晶體受激式拉曼散射
外文關鍵詞:eye-safelithium niobatestimulated Raman scatteringSRS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雷射測距系統是目前相當精確且已被廣泛利用到人造衛星或是地理學的測距上,此外,在軍事的利用上也是相當的重要,比方說設置在飛彈上的測距系統。然而,一般所使用的紅外線雷射光源,容易對人眼產生傷害。故發展人眼安全的雷射光源是刻不容緩的事。再者,由於測距的距離與雷射的能量相關,故本論文的重點便放在大能量的人眼安全雷射光源的發展上。
在我們的研究中,我們利用兩種方法來達成這個目標。一個是利用受激式拉曼散射的技術,另一個則是利用擴散式接合的週期性反轉的鈮酸鋰晶體來得到大能量的人眼安全雷射。雖然利用週期性反轉的鈮酸鋰晶體的光參數產生法是一種高效率的轉換方式來得到人眼安全的雷射,但晶體的損害關鍵點限制了所產生雷射的能量。但靠著增加雷射在晶體上的入射面積,可以避免掉損害關鍵點的問題,而得到較大能量的人眼安全雷射。我們已成功的利用高溫及高壓將兩塊鈮酸鋰晶體接合在一起,並且在一千倍的放大倍率下已無法觀察到兩塊晶體介面中的氣隙。利用氦氖雷射所做的光學測試顯示出傑出的雷射穿透率及材料的均勻性。我們相信利用鈮酸鋰晶體的成功經驗,擴散式接合的週期性反轉的鈮酸鋰晶體是可以在不久的將來完成的。
另一方面,我們將一能量為30-mJ的脈衝雷射射進一裝有丙酮的十公分長管子,利用受激式拉曼散射的方式而得到了1.5-mJ的人眼安全雷射。再者,丙酮的拉曼偏移為2921-cm-1, 所相對應的第一階散射波長為1544-nm,而我們所得到的轉換效率約為5%。由於丙酮是一種容易產生自聚焦現象的液體,而自聚焦現象對於受激式拉曼散射的影響十分明顯。故關於自聚焦的特性也會在本文中有所探討。此外,共振腔的結構是一種高效率的頻率轉換裝置,所以有關拉曼共振器的概念及實驗限制也將會在本論文中有所討論。

Basically speaking, light detection and ranging (LIDAR) is the most accurate technique for observing the orbits of artificial satellites or geodesy. On the other hand, it is also very useful in military application, for example, the radar system of missiles. However, the light source is usually at infrared wavelength such as 1064-nm, and this kind of wavelength could make serious damage to human naked eyes easily. Therefore, it is important to develop a laser source which is at eye-safe wavelength for further application. Since the ranging distance depends on the laser energy, the main scope of thesis will also be focused on generating large-energy eye-safe laser source.
We use two kinds of methods to achieve this goal. One is to use stimulated Raman scattering (SRS) and the other is to use diffusion-bonded PPLN (periodic poled lithium niobate) technique. Although PPLN crystals have high efficiency in frequency conversion, the low damage threshold (2.7J/cm2 in a 10ns pulse at 1064nm) makes it hard to get high-energy (~mJ) signal. By increasing laser aperture on the surface of PPLN crystals, we can avoid the damage problem and get larger-energy output. In our research, the air gap in the interface of two pieces of lithium niobate is invisible under the microscope with 1000 magnification. Preliminary optical scattering experiments by using a HeNe laser shows outstanding laser transmission and material homogeneity. It is believed that diffusion-bonded PPLN can be achieved based on the successful experience of diffusion-bonded lithium niobate in the future.
We also report the demonstration of 1.5-mJ/pulse eye-safe laser generation by using a 30-mJ/pulse Nd:YAG laser to excite SRS in acetone. The single-path gain length in acetone is 10-cm. Furthermore, the Raman shift of acetone is 2921-cm-1 and the corresponding first Stoke wavelength is at 1544-nm. The single-path efficiency is nearly 5%. Again, acetone is an anisotropic medium which has obvious self-focusing effect, and performance of SRS depends on the self-focusing effect. Thus, the observation of self-focusing effect is also described in this thesis. On the other hand, since the resonator is an efficient structure in laser generation, the concept and the limitation of Raman resonator are also discussed in detail.

Chapter 1 Introduction
1.1Motivation 1.2Diffusion-bonded Lithium Niobate and PPLN
1.3Stimulated Raman scattering
1.4Overview of this thesis
Chapter 2 Diffusion bonded Lithium Niobate and PPLN
2.1 Theory of diffusion-bonded Lithium Niobate and PPLN
2.2 The procedure of diffusion-bonded Lithium Niobate
2.3 The characterization of diffusion-bonded Lithium Niobate
2.4 The characterization of diffusion bonded PPLN
2.5 Conclusion
Chapter 3 Eye-safe laser generation by using Stimulated Raman scattering
3.1 Introduction
3.2 Theory of Raman scattering
3.3 Eye-safe laser generation by using Raman liquid cell
3.4 Raman resonator
3.5 Conclusion
Chapter 4 Conclusion
4.1 Research contribution
4.2 Future Research direction
Appendix

Reference
1.K. Kopczynski, Z. Mierczyk, S.M. Kaczmarek, ”Miniature, “eye-safe” solid-state lasers”, p292-295, Vol 3186, SPIE
2.L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “ Opt. Lett. 20, 52 (1995)
3.M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, “Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators”, Optics Letters 24, 1227 (1999)
4.Robert L. Byer, “Optical Parametric Oscillators”, Quantum electronics:a treatise, February 1969
Reference
1. Mark J.Missey and Vince Dominic, Lawrence E. Myers and Robert C. Eckardt, “Diffusion-bonded stacks of periodically poled lithium niobate”, p664-666, Vol.23, No. 9, May1, , optics letters (1998)
2. Lalitha. Parameswaran, Charles hsu and Martin A. Schmidt, “ A Merged MEMS-CMOS Precess using Silicon Wafer Bonding”, p613-616, Electron Devices Meeting, 1995
3. Akihiko Namba, Masato Sugimoto, Tetsuyoshi Ogura, yoshihiro Tomita, and Kazuo Eda, “Direct bonding of piezoelectric crystal onto silicon”, p3275-3276, appl. Phys. Lett. (1995)
4. Yoshihiro Tomita, Masato Sugimoto, and Kazuo Eda, “Direct bonding of LiNbO3 single crystals for optical waveguides”, p1484-1485, Appl. Phys. Lett (1995)
5. Kazuo Eda, Masato Sugimoto, and Yoshihiro Tomita, “Direct heterobonding of lithium niobate onto lithium tantalite”, p827-828, applied physics letters, 1995
Reference
1. Robert W. Boyd, ”Nonlinear optics”, 1992
2. Amnon Yariv, “Quantum electronics”, 1988
3. YC.Huang, R. L. Byer, ” Raman gain measurement for Calcium Tungstate”, Ed. Ginzton Laboratory, 1995
4. M. Mater, W. Kaiser, J. A. Grordmaine, “Backward Stimulated Raman Scattering”, p580-599, Physical review, Vol 177, NO2
5. N. Bloembergen, Y. R. Shen, physical review 12, 504 (1964)
6. N. Bloembergen, Y. R. Shen, physical review 13, 720 (1964)
7. W. G. Wagner, S. Yatsiv, and R.W. Hellwarth, in Physics of Quantum Electronics, edited by P.L. Kelley, B. Lax, and P.E. Tannenwald (McGraw-Hill Book Co., New York, 1966)
8. P. Lallemand, N. Bloembergen, “Self-focusing of laser beams and stimulated Raman gain in liquids”, p1010-1013, Phys. Rev. Letters, vol 15, NO26
9. Y. R. Shen and N. Bloembergen, “Theory of Stimulated Brillouin and Raman Scattering”, physics review, p.1787-1805, Mar 15, 1965
10. D.von der Linde、M. Maier、W. Kaiser, “Quantitative Investigations of the Stimulated Raman effect Using Subnanosecond Light Pulses”, Physical review, Vol 178, NO1, 5
11. Anthony E. Siegman, ”Lasers ”, p380-382, 1986
12. Yen-Chieh Huang, “Principles of nonlinear optics course reader”, 2002
13. Gisels Eckhardt, “Selection of Raman Laser Materials”, p1-8, IEEE Journal of Quantum Electronics, Vol QE-2, NO. 1, Jan 1966
14. Shou-Tai Lin, “Sensitive detection of chemical in liquid by Raman Spectroscopy”, the thesis of master degree, NCTU, 2001,
15. Georges G. Bret, Marguerite M. Denariez, ”Stimulated Raman effect in acetone and acetone-carbon-disulfide mixtures”,p151-154, Applied Physics Ltters, Vol8, NO. 6, March 1966.
16. Herbert Rabin/ C.L. Tang, “Quantum electronics: A treatise”, p454, February 1969
17. F. J. McClung, W. G. Wagner, and D. Weiner, “ Mode-structure independence of stimulated Raman-scattering conversion efficiencies”, p96-p97, Vol 15, NO. 3, July 1965.
18. N. Bloembergen and Y. R. Shen, ”Multimode effects in stimulated Raman emission”, p720-p724, Vol.13, NO.24, December, 1964.
19.Robert L. Byer, “Optical Parametric Oscillators”, Quantum electronics:a treatise, February 1969

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔