(3.238.174.50) 您好!臺灣時間:2021/04/18 16:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇住裕
研究生(外文):Juh-Yuh Su
論文名稱:藉由成長在偏角度基板改善磷化鋁銦鎵發光二極體特性
論文名稱(外文):Improved Performance of AlGaInP Light-Emitting Diodes Grown on Misoriented Substrate
指導教授:吳孟奇
指導教授(外文):Meng-Chi Wu
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:125
中文關鍵詞:多重量子井有機金屬磷化鋁銦鎵張力應變發光二極體
外文關鍵詞:Multi Quantum WellMetalorganicAlGaInPTensile StrainLED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文使用Aixtron 2400 低壓金屬有機氣相磊晶沈積法系統,成長磷化鋁銦鎵發光二極體及其材料在偏角度砷化鎵基板上。這些材料摻雜物的效率和行為是被詳細的討論及研究在不同的成長條件,譬如:成長溫度、[dopant]/[III]比和偏角度基板。此外,磷化鎵窗戶層的表面形態及鎂摻雜物的特性成長在不同偏角度也被研究,這表面形態與成長溫度,V/III 和偏角度基板有明顯的相關性。
由於發光二極體在長時間的使用或高電流的操作下,容易產生特性的改變及衰退,在本篇論文一個神奇的Ga0.65In0.35P 張力應變能障減緩層結構是被成長在AlGaInP多重量子井偏角度發光二極體之磷化鎵窗戶層和磷化鋁銦侷限層間。這個張力應變減緩層(約150埃)的晶格大小和價電帶介於窗戶層和侷限層間,實驗顯示張力應變減緩層能夠有效的降低元件的順向偏壓和動態電阻及減少界面熱效應,因此,伴隨著一個有效的光輸出效率的改善,特別對於高電流區域。這有與沒有張力應變減緩層發光二極體易被製作成晶粒,並連續在50亳安的直流電下作可靠度測試,使用非幅射和幅射電流水準作測試。這張力應變減緩層結構被證實能有效的改善光輸出功力效率,可靠度和全面性的壽命行為。由於張力應變減緩層容易被成長,因此它是一個非常重要的設計,對於大量生產和商業化的應用。
不同磷化鎵窗戶層的特性成長在不同偏角度的AlGaInP 發光二極體亦被研究其不同的磷化鎵窗戶層特性對其各偏角度元件的影響,首先,它是被發現在GaP/AlInP界面的GaP緩衝層成長率愈快,將導致不同偏角度發光二極體的磷化鎵窗戶層晶格品質將變差,然而,在一個適當的磷化鎵晶格品質範圍內,它將不會影響這不同偏角度發光二極體的光輸出強度。其次,磷化鎵窗戶層的載子濃度亦被發現與發光二極體光輸出強度有相關,這最大的光輸出強度存在在一個特定的[Mg]/[TMGa]比,當[Mg]/[TMGa]比值超過此一特性值時,這光輸出強度將隨著[Mg]/[TMGa]比值增加而降低,這原因可能來自於過多的鎂未被活化。再次,15度偏角度發光二極體的磷化鎵晶格品質是被發現易受成長溫度影響,它隨著成長溫度增加而有所改善,但是這2度偏角度發光二極體的磷化鎵晶格品質被發現幾乎不受溫度影響。最後,這15度偏角度AlGaInP發光二極體被發現在一個大的磷化鎵成長溫度範圍,其光輸出強度的穩定性佳且優於2度偏角度發光二極體,從實驗結果顯示15度偏角度之磷化鎵窗戶層晶格品質雖易受其成長溫度影響,但其對光輸出強度穩定性影響不大。
綜上所述,這些實驗結果對於實際或理論上使用偏角度應用將是有用的,對發光二極體的設計亦將有所改善。

This dissertation investigates the growth of GaP AlGaInP LED devices on misorientated GaAs substrates by Aixtron 2400 low pressure MOVPE. The doping efficiencies and behaviors of these materials are discussed and researched in detail under various growth conditions such as growth temperature, [dopant]/[III] ratio and substrate misorientation. Morphologies of the GaP windows layers grown on differently tilted angle substrates are studied. The morphology status is found to be strong dependent on growth temperature, V/III and substrate misorientation.
Because LEDs under long-term or high-current operating undergo significant performance change and degradation with time, a novel Ga0.65In0.35P TSBR structure is grown between window and cladding layers of MQW-AlGaInP LEDs. The TSBR (~150 Å Ga0.65In0.35P) film is of lattice size and valence band energy intermediate between window and cladding layers, thus reducing band offset. Experimental characterization shows significant decrease in device forward bias, dynamic resistance and junction heating, with strong improvement in power output degradation for the high current region. LEDs with and without TSBR are fabricated, aged at DC 50mA, and tested at non-radiative and radiative current levels. The TSBR layer demonstrates significantly improved power efficiency, reliability and global lifetime behavior. This, together with TSBR low cost and ease of implementation, makes it potentially a very important design for mass-production and commercial applications.
The characteristics of GaP window layers grown on AlGaInP misoriented LEDs are investigated in order to clarify variation of AlGaInP LED characteristics for various misorientated substrates. It is found that the GaP buffer growth rate between the GaP/AlInP interfaces can modify and improve GaP quality. However, the intensity of LED light output does not clearly change, i.e. the light output is essentially unaffected within a suitable range of the GaP quality for 2º and 15º substrates. Second, the carrier concentration of the GaP window layer is related to the light output of the LEDs, and a maximum light output exists for a specific [Mg]/[TMGa] ratio. When this specific value is exceeded, light output decreases gradually as [Mg]/[TMGa] increases. It is conjectured that the reason may be inactive dopant. Third, the GaP crystal of the 15 º-off LED is sensitive to growth temperature and improves with growth temperature, but the 2 º-off LED is almost unchanged with changing growth temperature. Fourth, the stability of light output is superior for the 15 º-off AlGaInP LEDs over a large growth temperature ranges, i.e. it achieves a large growth temperature window by using high tilt angle.
In sum, these experimental results will be useful both theoretically and practically for applications using high-tilt substrates, and especially for improved LED designs.

CONTENTS
ABSTRACT I
LIST OF TABLES AND FIGURES. VIII
Chapter 1 Introduction 1
1.1 Historical Overview………………………………………………. 1
1.2 the market potential of high brightness Light-emitting diodes…… 2
1.3 Dissertation objective…………………………………………….. 3
Chapter 2 Metal-Organic Vapor Phase Epitaxy of III-V Compound Semiconductors 17
2.1 The MOVPE Growth Process……………………………………. 17
2.1.1 Physical description………………………………………... 17
2.1.2 Source Compounds………………………………………… 19
2.1.3 Growth mechanism (processes)……………………………. 22
2.2 Low Pressure MOVPE system…………………………………… 24
2.2.1 Gas-handing (mixture) system…………………………….. 24
2.2.2 Reactor system…………………………………………….. 25
2.2.3 Vacuum system……………………………………………. 26
2.2.4 Absorption system of exhaust process gas………………… 27
2.3 Summary………………………………………………………... 27
Chapter 3 Materials properties of MOVPE Senmiconductors at different orientated substrates 40
3.1 Growth condition of AlGaInP…………………………………….. 40
3.2. Doping characteristics of AlInP on differently misorientated
substrates………………………………………………………... 42
3.2.1 Mg-doped AlInP…………………………………………. 42
3.2.2 Si-doped AlInP…………………………………………. 44
3.2.3 un-doped GaInP………………………………………… 45
3.3 summary of AlGaInP…………………………………………… 46
3.3.1 bandgap energy in AlGaInP……………………………. 46
3.3.2 Oxygen and Hydrogen issue in AlGaInP………………. 49
3.3.3 ordering effect of AlGaInP…………………………….. 51
3.4 Growth and properties of GaP on differently misorientated
substrates……………………………………………………… 51
3.4.1 Surface morphologies of the GaP window layers
grown on differently misorientated substrates using
various V/III ratio and growth temperature……………... 52
3.4.2 Doping characteristics of GaP on differently
misorientated substrates……………………………….. 54
Chapter 4 AlGaInP Light-Emitting Diode With Tensile Strain Barrier Reducing Layer 78
4.1 Device Fabrication………………………………………………. 79
4.2 Results and Discussion………………………………………….. 80
4.2.1. The crystal quality of the GaP window layer
versus with- and without- GaInP TSBR……………… 80
4.2.2 Current-voltage, dynamic resistance and light-
output power characteristics of LED with- and
without- TSBR…………………………………………… 81
4.2.3 Life behavior of LEDs with- and without TSBR………… 83
4.3 Conclusion……………………………………………………….. 85
Chapter 5 Influence of Charactering Effect of GaP Window Layer on AlGaInP LEDs at Different Orientations 93
5.1 Experiment Procedure…………………………………………… 95
5.2 Result and discussion……………………………………………. 96
5.2.1 The quality of the GaP window layers at different
growth rates of the GaP buffer layers between the
GaP and AlInP interface for differently
orientated LEDs is considered……………………………… 96
5.2.2 Relationship between Intensity of the Output Light
and the Crystal Quality of GaP on the Misoriented LEDs…. 98
5.2.3 Light Output Intensity against Carrier Concentration
of GaP Windows for Differently Oriented LEDs………… 98
5.2.4 GaP Crystals Quality on Misoriented LEDs at Different
Growth Temperature of the GaP Window Layer…………… 100
5.2.5 Device Performance of GaP Windows Grown on
Misoriented LEDs at Different Temperatures……………… 101
5.3 Conclusions………………………………………………………. 102
Chapter 6 Conclusions and Future Work 112
1. Properties of ‘AIInP, GaInP and GaP, grown on differently
tilted angle substrates…………………………………………….. 112
2. Reliability of AlGaInP Light-Emitting Diodes with Tensile Strain
Barrier Reducing(TSBR) Layer using High-tilt Angle Substrates… 112
3. Character of GaP Window Layers on AlGaInP LEDs at
Different Substrate Misorientations………………………………. 113
4. Future work……………………………………………………….. 114
REFERENCES 116
PUBLICATION LIST 123
VITA

[1] N. Holonyak, S.F. Jr., and Bevacqua,(1962). Appl. Phys. Lett. 1, 82.
[2] R.A. Logan., and F.K. Reinhart.,(1973). J. Appl. Phys. 44, 4172.
[3] W.O. Groves., A.H. Herzog., and M.G. Craford,(1971). Appl. Phys. Lett. 19, 184.
[4] Zh. I. Alferov, V.M. Andreev, D.Z. Garbuzov, and V.D. Rumyantsev, (1975). Sov. Phys.-Semicond. (Engl. Transl.) 9, 305.
[5] J. Nishizawa, and K. Suto,(1977). J. Appl. Phys. 48,3484.
[6] C.P. Kuo, R.M. Fletcher, T.D. Osentowski, M.C. Lardizabal, M.G. Craford and V.M. Robbins, Appl. Phy. Lett. 57, 2937 (1990).
[7] H. Sugawara, M. Ishikawa and G. Hatakoshi, Appl. Phys. Lett. 58, 1010 (1991).
[8] F.A. Kish., F.M. Steranka, D.C. Defevere, D.A. Vanderwater, K.G. Park., C.P. Kuo, T.D. Osentowski, M.J. Peanasky, J.G. Yu., R.M. Fletcher., D.A. Steigerwald, and M.G. Craford,(1994). Appl. Phys. Lett. 64, 2839.
[9] H. M. Manasevit, J. Crystal Growth 13/14, (1972), 306.
[10] H. M. Manasevit, J. Crystal Growth 22, (1974), 125.
[11] R. Bunsen, Ann. 31, 175 (1839). See also E. G. Rochow, D. T. Hurd, and R. N. Lewis, The Chemistry of Organometallic Compounds (John Wiley & Sons, New York, 1957), pp. 1 & 207.
[12] C.H. Chen., C.A. Larsen., and G.B. Stringfellow,(1987). Appl. Phys. Lett. 50, 218.
[13] C.H. Chen, D.S. Cao, and G.B. Stringfellow,(1988). J. Electron. Mater. 17, 67.
[14] P. D. Dapkus, Ann. Rev. Mater. Sci, 12, 243-249 (1982)
[15] T. F. Kuech, E. Veuhoff, T. S. Kuan, V. Deline, and R. Potenmski, J. Crystal Growth 77, (1985), 257
[16] T.F. Kuech, D.J. Wolford, E. Veuhoff, V. Deline, P.M. Moomey, R. Potemsky, and J. Bradley.,(1987). J. Appl. Phys. 62, 632.
[17] G. B. Stringfellow, in Semiconductors and Semimetals, vol. 22, A. ed W. T. Tsang (Academic Press, Orlando, 1985), pp. 209-259.
[18] J. P. Duchemin, M. Bonnet, F. Koelsch, and D. Huyghe, J. Electrochem. Soc. 126, 1134, (1979)
[19] M. Razhegi, M. A. Poisson, J. P. Larivain, and J. P. Duchemin, J. Electron. Mater. 12, 371, (1983).
[20] H. M. Manasevit, and W. I. Simpson, J. Electrochem. Soc. 120, 135, (1973).
[21] J. R. Shealy, and G. W. Wicks, “Investigation by Ramam Scattering of the Properties of III-V Compound Semiconductors at High Temperature”, Appl. Phys. Lett. 50 (17), 1173-1175 (1987).
[22] C. A. Larsen, and G. B. Stringfellow, J. Crystal Growth, 75, 247 (1986).
[23] C. A. Larsen, N. I. Buchan, and G. B. Stringfellow, J. Crystal Growth, 85, 148 (1987).
[24] C.A. Larsen., N.I. Buchan, and G.B. Stringfellow,(1987). J. Cryst. Growth 85, 148.
[25] B. Pajot, J. Chevallier, A. Jalil, and B. Rose,(1989). Semicond. Sci. Technol. 4, 91.
[26] Y. Ohba, Y. Nishikawa, C. Nozaki, H. Sugawara, and T. Nakanisi, J. Crystal Growth, 93 (1988), 613-617.
[27] C.C. Wu, C.Y. Chang, P.A. Chen, H.D. Chen, K.C. Lin., and S.H. Chan,(1994). Appl. Phys. Lett. 65, 1269.
[28] M. Kondo, C. Anayama, H. Sekiguchi, and T. Tanahashi,(1994c). J. Cryst. Growth 141, 1.
[29] J.S. Roberts, N.J. Mason, and M. Robinson,(1984). J. Cryst. Growth 68, 422.
[30] T.F. Kuech, P.J. Wang, M.A. Tischler, R. Potemski, G.J. Scilla, and F. Cardone,(1988). J. Cryst. Growth 93, 624.
[31] J.S. McCalmont, H.C. Casey, T.Y. Jr., Wang, and G.B. Stringfellow,(1992). J. Appl. Phys. 71, 1046.
[32] D. Kisker, J.N. Miller, and G.B. Stringfellow,(1982). Appl. Phys. Lett. 40, 614.
[33] M. Suzuki, M. Ishikawa, K. Itaya, Y. Nishikawa, G. I. Hatakoshi and Y. Kokubun, J. Crystal Growth 115 (1991) 498-503
[34] H. Hamada, M. Shono, S. Honda, R. Hiroyama, K. Yodashi, and T. Yamaguchi, IEEE J. Quantum Electronics, vol 27 No.6 June 1991 1483-1991
[35] A.D. Prins, J.L. Sly, A.T. Meney, D.J. Dunstan, E.P. O’Reilly, A.R. Adams, and A. Valster,(1995a). J. Phys. Chem. Solids 56, 349-352.
[36] H. Tanaka, Y. Kawamura, and H. Asahi,(1986). Electron. Lett. 22, 707-708.
[37] H. Tanaka, Y. Kawamura, and H. Asahi,(1987a). Electron. Lett. 23, 166-168.
[38] H. Tanaka, Y. Kawamura, S. Nojima, K. Wakita, and H. Asahi,(1987b). J. Appl. Phys. 61, 1713-1719.
[39] M.O. Watanabe, and Y. Ohba,(1987). Appl. Phys. Lett. 50, 906-908.
[40] H.K. Yow, P.A. Houston, and M. Hopkinson,(1995). Appl. Phys. Lett. 66,2852-2854.
[41] C.T.H.F. Liedenbaum, A. Valster, A.L.G.H. Severens, and G.W. ‘t Hooft,(1990). Appl. Phys. Lett. 57, 2698-2700.
[42] D. Patel, M.J. Hafich, G.Y. Robinson, and C.S. Menoi,(1993). Phys. Rev. B 48, 18031-18036.
[43] S. Naritsuka, Y. Nishikawa, H. Sugawara, M. Ishikawa and Y. Kokubum, J. Electron. Mater. 20, 687 (1991).
[44] D.S. Cao, A.W. Kimball and G.B. Stringfellow, J. Appl. Phys. 67, 739 (1990).
[45] M. Suzuki, K. Itaya, Y. Nishikawa, H. Sugawara, and M. Okajima,(1993). J. Cryst. Growth 133, 303-308.
[46] M. Kondo, N. Okada, K. Domen, K. Sugiura, C. Anayama, and T. Tanahashi,(1994). J. Electron. Mater. 23, 355-358.
[47] H. Sugawara, K. Itaya, M. Ishikawa, and G. Hatakoshi,(1992a). Jpn. J. Appl. Phys. 31, 2446-2451.
[48] K. Itaya, H. Sugawara, and G. Hatakoshi,(1994). J. Cryst. Growth 138, 768-775.
[49] Y. Nishikawa, M. Suzuki, and M. Okajima,(1993). Jpn. J. Appl. Phys. 32, 498-501.
[50] M. Suzuki, K. Itaya, Y. Nishikawa, H. Sugawara, and M. Okajima,(1993). J. Cryst. Growth 133, 303.
[51] K.Kadoiwa, M. Kato, T. Motoda, T. Ishida, N. Fujii, N. Hayafuji, M. Tsugami, T. Sonoda, S. Takamiya, and S. Mitsui, J. Crystal Growth 145 (1994) 147-152
[52] A.Ishibashi, M. Mannoh, and K. Ohnaka, J. Crystal Growth 145 (1994) 414-419.
[53] A.Ishibashi, M. Mannoh, I. Kidoguchi, Y. Ban and K. Ohnaka, Appl. Phys. Lett. 65 (10), 5 Sep. 1994 p1275-1277.
[54] C.P. Kuo, S.K. Vong, R.M. Cohen, and G.B. Stringfellow,(1985). J. Appl. Phys. 57, 5428.
[55] A. Gomyo, K. Kobayashi, S. Kawata, I. Hino, and T. Susuki,(1986). J. Cryst. Growth 77, 367.
[56] G.B. Stringfellow,(1993). In “Common Themes and Mechanisms of Epitaxial Growth” (P. Fuoss, J. Tsao, D. W. Kisker, A. Zangwill, and T. Kuech, eds.), Mater. Res Soc. Pittsburg. Pp. 35-46.
[57] A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata, and I. Hino, Appl. Phys. Lett. 50 (11) 17 mar. 1987 673-675
[58] G. B. Stringfellow, and M. George Craford, High Brightness Light Emitting Diodes, vol. 48, Academic Press Limited, 1997), pp. 172-176.
[59] M. Kondo, C. Anayama, T. Tanahashi and S. Yamazaki, J. Crystal. Growth 124 (1992) 449
[60] J.F. Lin, M.C. Wu, M.J. Jou, C.M. Chang and B.J. Lee, J.Crystal Growth 142 (1994) 15-20.
[61] F. T. J. Simth, Prog. Solid Sc. Chem. Vol. 19, pp. 111-164,1989.
[62] R. E. Nahory, M. A. Pollack, E. D. Beebe, and J. C. DeWinter, J. Electrochem. Soc. 125, 1053 (1978)
[63] H. Sonomura, H. Uda, A. Sugimura, A. Ashida, H. Horinaka, and T. Miyauchi, J. Appl. Phys. 62, 4142, (1987).
[64] A. B. Chen, and A. Sher, Phys. Rev. B32, 3696 (1985).
[65] R. R. Saxena, J. E. Fouquet, V. M. Sardi, and R. L. Moon, Appl. Phys. Lett. 53, 304, (1998)
[66] C. H. Chen, C. A. Larsen, and G. B. Stringfellow, Appl. Phys. Lett. 50, 218, (1987)
[67] H. Sugawara, M. Ishikawa and G. Hatakoshi, Appl. Phys. Lett., vol. 58, no. 10, pp 1010-1012., Mar. 1991.
[68] R.M. Fletcher, C.P. Kuo, T.D. Osentowski, K.H. Huang, M.G. Craford and V.M. Robbins, J. Electron. Mater. vol 20, no. 12, pp. 1125-1130, 1991.
[69] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. -H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. -W. Huang, S. A. Stockman, F. A. Kish, M. G. Graford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, Appl. Phys. Lett. 75, pp. 2365-2367, 1999.
[70] K. Streubel, N. Linder, R. Wirth and A. Jaeger, IEEE Journal on Selected Topics in Quantum Electronics, Vol. 8, No. 2, pp. 321-332, March/April, 2002.
[71] R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiestel, D. Zipperer, G. H. Dohler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, Appl. Phys. Lett., vol. 79, pp1-3, 2001.
[72] C. Rooman, R. Windisch, M. D’Hondt, B. Dutta, P. Modak, P. Mijlemans, G. Borghs, R. Vounckx, I. Moerman, M. Kuijk and P. Heremans, Electron. Lett., vol. 37, pp 852-853, 2001.
[73] O. Pursiainen, N. Linder, A. Jaeger, R. Oberschmid, and K. Streubel, Appl. Phys. Lett., vol. 79, pp. 2895-2897, 2001.
[74] K. Streubel, N. Linder, R. Wirth and A. Jaeger, IEEE Journal on Selected Topics in Quantum Electronics, Vol. 8, No. 2, pp. 321-332, March/April, 2002.
[75] C.P. Kuo, R.M. Fletcher, T.D. Osentowski, M.C. Lardizabal, M.G. Craford and V.M. Robbins, Appl. Phy. Lett. 57, 2937 (1990).
[76] C.Y. Lee, M.C. Wu and W. Lin, J. Crystal Growth 200, 382 (1999).
[77] C.J. Nuese, J.J. Toetjen, J.J. Gannon and H.F. Gassenberger, J. Electrochem. Soc. 116, 248 (1969).
[78] H. Sugawara, K. Itaya, M. Ishikawa and G.I. Hatakoshi, Jan. J. Appl. Phys, 31, 2446 (1992).
[79] K. Kobayashi, Y. Ueno, H. Hotta, A. Gomyo, K. Tada, K. Hara and T. Yuasa, Jan. J. Appl. Phys. 29, 1669 (1990).
[80] G. Hatakoshi, M. Suzuki, N. Motogi, M. Ishikawa and Y. Uematsu, Trans. IEICE. Jpn. E71, 315 (1988).
[81] H.C. Casey, Jr. and M.B. Panish, Heterostructure Lasers (Academic Press, New York, 1978) part B, p. 3.
[82] S. Naritsuka, Y. Nishikawa, H. Sugawara, M. Ishikawa and Y. Kokubum, J. Electron. Mater. 20, 687 (1991).
[83] D.S. Cao, A.W. Kimball and G.B. Stringfellow, J. Appl. Phys. 67, 739 (1990).
[84] K.H. Huang, J.G. Yu, C.P. Kuo, R.M. Fletcher, T.D. Osentowski, L. J. Stinson and M.G. Craford, Appl. Phys. Lett. 60, 1045 (1992).
[85] F.A. Kish, F. M. Steranka, D.C. DeFevere, D.A. Vanderwater, K.G. Park, C.P. Kuo, T.D. Osentowski, M.J. Peanasky, J.G. Yu, R.M. Fletcher, D.A. Steigerwald, M.G. Craford, V.M. Robbins, Appl. Phys. Lett., 64, 2839 (1994).
[86] M. Saarinen, V. Vilokkinen, M. Dumitrescu and M. Pessa, IEEE Photonics Technol. Lett., 13, 10 (2001).
[87] R. Windisch, B. Dutta, M. Kuijk, A. Knobloch, S. Meinlschmidt, S. Schoberth, P. Kiesei, G. Borghs, G.H. Dohler and P. Heremans, IEEE Trans. Electron Devices, 47, 1492 (2000).
[88] T. Hayakawa, K. Takahashi, M. Hosoda, S. Yamamoto and T. Hijikata, Jpn. J. Appl. Phys., vol. 27, no. 8, pp. L1553-L1555, Aug. 1988.
[89] S.J. Chang, C.S. Chang, Y.K. Su, P.T. Chang, Y.R. Wu, K.H. Huang and T.P. Chen, IEEE Photonics Technol. Lett., vol. 9, no. 9, pp.1199-1201, Sep. 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔