跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 10:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭宏文
研究生(外文):Hung-Wen Cheng
論文名稱:二階系統輸出回授的正則化
論文名稱(外文):Regularization of Second-order Systems by Output Feedback
指導教授:林文偉林文偉引用關係
指導教授(外文):Wen-Wei Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:24
中文關鍵詞:正則化指標成比例和微分的輸出回授控制完全可控制強可控制完全可觀測強可觀測
外文關鍵詞:regularindexproportional and derivative output feedback controlscompletely controllablestrongly controllablecompletely observablestrongly observable
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此篇論文我們探討二階系統輸出回授可被正則化的條件,我們知道在成比例和微分的輸出回授控制條件下,會形成一個封閉系統且此封閉系統是正則化且指標小於等於1. 這些性質敘述動力代數方程系統可解性.

Conditions are given under which a second-order system can be regularized
by output feedback. It is shown that under these conditions, proportional
and derivative output feedback controls can be constructed such that
the closed-loop system is regular and has index at most one. This property
ensures the solvability of the resulting system of dynamic-algebraic equations.
A reduced form is given that allows the system procedures used to
establish the theory are based only on orthogonal matrix decompositions
and can therefore be implemented in a numerically stable way.

1 Introduction
2 Regularizability Conditions
3 A Reduced Form
4 Main Theorem
5 Conclusion
6 Appendix A

[1] A. Bunse-Gerstner, R. Byers, V. Mehrmann, and N. K. Nichols, “Feedback
design for regularizing descriptor systems”, Linear Algebra Appl., vol. 299,
pp. 119—151, 1999.
[2] A. Bunse-Gerstner, V. Mehrmann, and N. K. Nichols, “Regularization of descriptor
systems by derivative and proportional state feedback”, SIAM J. Matrix
Anal. Appl. Vol. 13, pp. 46—67, 1992.
[3] A. Bunse-Gerstner, V. Mehrmann, and N. K. Nichols, “Regularization of descriptor
systems by output feedback”, IEEE Trans. Automat. Control, AC-39,
pp. 1742—1747, 1994.
[4] D. J. Cobb, “Feedback and pole placement in descriptor variable systems”,
Internat. J. Control, vol. 33, pp. 1135—1146, 1981.
[5] F. R. Gantmacher, “Theory of Matrices”, vol. 2, Chelsea, New York, 1959.
[6] T. Geerts, “Solvability conditions, consistency, and weak consistency for linear
di®erential-algebraic equations and time-invariant linear systems: The general
case”, Linear Algebra Appl., vol 181, pp. 111—130, 1993.
[7] G. H. Golub and G. F. Van Loan, “Matrix Computations”, 2nd ed. Baltimore,
MD: Johns Hopkins Univ. Press, 1989.
[8] J. Kautsky, N. K. Nichols and E. K.-W. Chu, “Robust pole assignment in
singular control systems”, Linear Algebra Appl., vol. 121, pp. 9—37, 1989.
[9] F. Tisseur and K. Meerbergen, “The Quadratic Eigenvalue Problem”, SIAM
Review. Vol. 43, pp. 235—286, 2001.
[10] G. C. Verghese, B. C. L´evy, and T. Kailath, “A general state space for singular
systems”, IEEE Trans. Automat. Control, AC-26, pp. 811—831, 1981.
[11] E. L. Yip and R. F. Sincovec, “Solvability, controllability and observability of
continuous descriptor systems”, IEEE Trans. Automat. Control, AC-26, pp.
702—707, 1981.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top