(3.238.249.17) 您好!臺灣時間:2021/04/12 12:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張國財
研究生(外文):Kuo-Tsi Chang
論文名稱:壓電振動子之電性分析與參數估測
論文名稱(外文):Electric Analysis and Parameter Estimation of a Piezoelectric Vibrator
指導教授:歐陽敏盛歐陽敏盛引用關係
指導教授(外文):Min-Shen Ouyang
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:91
語文別:中文
論文頁數:122
中文關鍵詞:開路暫態響應壓電振動子參數估測移動電流共振頻率反共振頻率
外文關鍵詞:open-circuit transient responepiezoelectric vibratorparameter estimationmotional currentresonant frequencyanti-resonant frequency
相關次數:
  • 被引用被引用:2
  • 點閱點閱:160
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文研究的目的有三:一是探討壓電振動子在開路瞬間於端點產生之最高電壓及其發生之條件,另一是利用開路暫態響應修正振動子之各種損失等效電阻及估算在振動子內消耗之各種損失,另一是探討移動電流之大小對振動子之共振頻率、各種損失等效電阻及各種損失之影響。首先根據振動子之等效電路推導出各種穩態響應及發生於端點之開路暫態響應。此暫態響應與等效電路之初始值有關聯性,且暫態響應之最大值與穩態響應之開路時間及操作頻率有關係。其次,由暫態響應之振盪頻率及實際量測之共振頻率可以得知,等效電路內之電感及電容參數幾乎可以視為定值,故本文提出利用暫態響應之交流與直流時間常數修正各種損失等效電阻。經由實作結果顯示,本文所提之等效電阻修正方法,具有另人滿意之簡易性及實用性。接著利用一並聯電阻降低暫態響應之直流響應時間及縮短暫態響應對人體或設備之衝擊時間,同時並聯電阻必須以不影響正常的穩態響應為原則。最後,利用振動子驅動超音波氣浮系統及壓電致動離合器,且進行相關的機構設計、驅動電路設計及特性量測。

In this dissertation, the maximum amplitude of transient response at terminals of a piezoelectric vibrator and its drive conditions, induced immediately after an AC voltage connected to the vibrator is switched off, are first studied. Then, parameters associated with losses of the vibrator are determined by transient response at the terminals, and the losses are also. Moreover, characteristics of the vibrator, including resonant frequency, parameters associated with the losses and the losses, affected by motional current of the vibrator are researched. To do so, an equivalent circuit of the vibrator is first expressed to derive steady-state responses and transient response at the terminals of the vibrator driven by sinusoidal wave voltage. Meanwhile, the transient response is associated with initial states of the vibrator, and the maximum amplitude of the transient response depends on frequency and switching-off time of the voltage. Then, according to measured oscillated frequency of the transient response and measured resonant frequencies of the vibrator, L-C parameters of the equivalent circuit are almost constant, and thus parameters associated with the losses are estimated using AC and DC time constants of the transient response. Experimental results indicate that the estimation method applied to determine parameters associate with the losses is easy and practical. Moreover, a parallel resistor is connected to the vibrator to reduce DC transient response time of the transient response and shorten the time of the hurt for users or the damage for instruments, and the steady-state responses by the parallel resistor are unaffected. Finally, both an ultrasonic levitation system and a piezoelectric actuating clutch system are driven using the vibrator, and measured when mechanisms and drive circuits of them are designed and fabricated.

ABSTRACT i
LIST OF CONTENTS ii
LIST OF TABLES v
LIST OF FUGURES vi
LIST OF SYMBOLS xi
CHAPTER 1 INTRODUCTION 1
1.1 Motivations and Objectives. 1
1.2 Survey of Previous Work 2
1.3 Contribution of This Dissertation 4
1.4 Organization of This Dissertation 6
CHAPTER 2 HISTORICAL REVIEWS OF DYNAMICS OF PIEZOELECTRIC VIBRATOR 8
2.1 Historical Reviews of Dynamics of Piezoelectric Vibrator 8
2.2 Models of the Dynamics 12
CHAPTER 3 OPEN-CIRCUIT TEST OF PIEZOELECTRIC VIBRATOR 15
3.1 Introduction 15
3.2 Electric Analysis. 15
3.2.1 Analysis of steady-state responses using sinusoidal wave voltage 15
3.2.2 Analysis of transient response at terminals of piezoelectric vibrator 17
3.2.3 Determining the maximum amplitude and its drive conditions 24
3.3 Experimental Setup 26
3.3.1 Design of AC power supply 26
3.3.2 Design of open-circuit testing system 31
3.4 Experimental Results 33
3.4.1 Measured steady-state responses 33
3.4.2 Measured transient responses 34
2.4.3 Estimated results using measured transient times 41
3.5 Summary 45
CHAPTER 4 PARAMETER ESTIMATION BASED ON OPEN-CIRCUIT TRANSIENT RESPONSE 46
4.1 Introduction 46
4.2 Analysis of Steady-State Responses Induced by Square Wave Voltage 46
4.3 Principle of Estimating Parameters and Reducing DC Transient Time 48
4.3.1 Estimating parameters 48
4.3.2 Reducing DC transient time 49
4.4 Experimental Results 50
4.4.1 Measured steady-state responses using square wave voltages 50
4.4.2 Measured transient responses after resonance operation 53
4.4.3 Estimated parameters and estimate power losses 56
4.4.4 Calculate input impedance of the vibrator 59
4.4.5 Reduced DC transient times 61
4.5 Discussion 63
4.5.1 Discussion of estimating parameters 63
4.5.2 Discussion of estimating quality factors 64
4.5.3 Discussion of determining L-C parameters 65
4.6 Summary 67
CHAPTER 5 APPLICATIONS 68
5.1 Application (I): Ultrasonic Levitation System 68
5.1.1 Introduction 68
5.1.2 Brief description of near-field acoustic levitation 69
5.1.3 Design of measuring systems 71
5.1.4 Experimental results 73
5.1.5 Summary 77
5.2 Application (II): Piezoelectric Actuating Clutch 77
5.2.1 Introduction 77
5.2.2 Principle of piezoelectric actuating clutch 78
5.2.3 Design of clutch driving system 80
5.3 Application (III): A Motor Driven Using Disk-Shaped Ultrasonic Actuator 83
5.3.1 Principle of disk-shaped ultrasonic actuator 83
5.3.2 Measuring and calculating methods 89
5.3.3 Experimental results 91
5.3.4 Summary 92
CHAPTER 6 CONCLUSIONS 96
6.1 Conclusion 96
6.2 Recommendations for Future Work 98
REFERENCES 99
BIOGRAPHIC NOTE 105

[1] Y. Tomikawa, C. Kusakabe, K. Ohnishi, K. Sakurai and M. Tanaka, “Damped capacitance elimination in piezoelectric vibrator using operational amplifier circuit,” Japanese Journal Applied Physics, Vol. 35, 1996, pp. 3042-3045.
[2] Y. Tomikawa, C. Kusakabe, K. Ohnishi, K. Sakurai and M. Tanaka, “Damped-capacitance elimination of piezoelectric vibrator for their wide applications,” IEEE Ultrasonic Symposium, 1996, pp. 963-966.
[3] K. Ohnishi, K. Sakurai, Y. Tomikawa and C. Kusakabe, “Piezoelectric ceramics oscillator using damped capacitance elimination technique,” Japanese Journal Applied Physics, Vol. 35, 1996, pp. 5027-5030.
[4] S. Hirose, M. Aoyagi and Y. Tomikawa, “Dielectric loss in a piezoelectric ceramic transducer under high-power operating; increase of dielectric loss and its influence on transducer efficiency,” Japanese Journal Applied Physics, Vol. 32, 1993, pp. 2418-2421.
[5] S. Hirose, “New method for measuring mechanical vibration loss and dielectric loss of piezoelectric transducer under high-power excitation,” Japanese Journal Applied Physics, Vol. 33, 1994, pp. 2945-2948.
[6] M. Umeda, K. Nakamura and S. Ueha, “The measurement of high-power characteristics for a piezoelectric transducer based on the electrical transient response,” Japanese Journal Applied Physics, Vol. 37, 1998, pp. 5322-5325.
[7] M. Umeda, K. Nakamura and S. Ueha, “Effects of vibration stress and temperature on the characteristics of piezoelectric ceramics under high vibration amplitude levels measured by electrical transient response,” Japanese Journal Applied Physics, Vol. 38, 1999, pp. 5581-5585.
[8] R. Briot, P. Gonnard and M. Traccaz, “Studies on dielectric and mechanical properties of PZT doped ceramics using a model of losses,” IEEE Ultrasonic Symposium, 1991, pp. 580-583.
[9] H. Shimizu and S. Saito, “An improved equivalent circuit of piezoelectric transducer including the effect of dielectric loss,” Journal Acoustic Society Japanese, Vol. 6, 1985, pp. 225-234.
[10] F. Si and M. IDE, “Measurement on specimen acoustic impedance in ultrasonic plastic welding,” Japanese Journal Applied Physics, Vol. 34, 1995, pp. 2740-2744.
[11] J.L.S. Emeterio, P.T. Sanz and A. Ramos, “Influence of dielectric losses on the shift of the fundamental frequencies of thickness mode piezoelectric ceramic resonators,” Journal of the European Ceramic Society, Vol. 19, 1999, pp. 1165-1169.
[12] B. Noorbeesht, “Modified equivalent circuit for optoacoustic transducers,” IEEE Transactions on Sonics and Ultrasonics, Vol. 29, 1982, pp. 377-385.
[13] J. Soderkvist, “Electric equivalent circuit for flexural vibrations in piezoelectric materials,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 37, 1990, pp. 577-586.
[14] J.L.S. Emeterio, A. Ramos, P.T. Sanz and M. Cegarra, “Definition and measurement of the normalized electrical impedance of lossy piezoelectric resonators for ultrasonic transducer,” Ultrasonic, Vol. 38, 2000, pp. 140-144.
[15] N. Aurelle, D. Guyomar, C. Richard, P. Gonnard and L. Eyraud, “Nonlinear behavior of an ultrasonic transducer,” Ultrasonics, Vol. 34, 1996, pp. 187-191.
[16] L.C. Lynnworth, D.R. Patch and W.C. Mellish, “Impedance-matched metallurgically sealed transducers,” IEEE Transactions on Sonics and Ultrasonics, Vol. 31, 1984, pp. 101-104.
[17] Z. Yan. Q. Fang, J. Huang, B. He and Z. Lin, “Considerations and guides of the wattmeter method for measuring output acoustical power of Langevin-type transducer systems-II: experiment,” Ultrasonics, Vol. 35, 1997, pp. 543-546.
[18] S.H. Chang, N.N. Rogacheva and C.C. Chou, “Analysis of methods for determining electromechnaical coupling coefficients of piezoelectric elements,” IEEE Transactions on Ultraonics, Ferroelectrics, and Frequency Control, Vol. 42, 1995, pp. 630-640.
[19] M. Umeda, K. Nakamura and S. Ueha, “Effects of a series capacitor on the energy consumption in piezoelectric transducers at high vibration amplitude level,” Japanese Journal Applied Physics, Vol. 38, 1999, pp. 3327-3330.
[20] K. Nakamura, M. Kurosawa, H. Kurebayashi and S. Ueha, “An estimation of load characteristics of an ultrasonic motor by measuring transient responses,” IEEE Transactions on Ultraonics, Ferroelectrics, and Frequency Control, Vol. 38, 1991, pp. 481-485.
[21] K.W. Kwork, H.L.W. Chan and C.L. Choy, “Evaluation of the material parameters of piezoelectric materials by various methods,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 44, 1997, pp. 733-742.
[22] K.-T. Chang and M. Ouyang, “Open-circuit test of a PZT vibrator and its applications,” Journal of Ultrasonics, Vol. 41, 2003, pp. 15-23.
[23] K.-T. Chang and M. Ouyang, 2001, “Open-circuit test with transient response for modifying equivalent circuit of a PZT vibrator,” in R.O.C. Symposium on Electrical Power Engineering, pp. 174-178.
[24] T. Sashida and T. Kenjo, An Introduction to Ultrasonic Motors, Clarendon Press, Oxford, 1993, p.55.
[25] T. Ikeda, Fundamentals of Piezoelectricity, Oxford University Press, Oxford, 1990, pp.83-92.
[26] S. Takahashi and S. Hirose, “Vibration-level characteristics of lead-zirconate-titanate ceramics,” Japanese Journal Applied Physics, Vol. 31, 1992, pp.3055-3057.
[27] Y. Cho and J. Wakita, “Nonlinear equivalent circuits of acoustics devices,” IEEE Ultrasonic Symposium, 1993, pp. 867-872.
[28] J.S. Kim, K. Choi and I. Yu, “A new method of determining the equivalent circuit parameters of piezoelectric resonators and analysis of the piezoelectric loading effect,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 40, 1993, pp. 424-426.
[29] T. Nakamoto and T. Kobayashi, “Development of circuit for measuring both Q variation and resonant frequency shift of quartz crystal microbalance,” IEEE Transactions on Ultrasonic, Ferroelectrics, and Frequency Control, Vol. 41, 1994, pp. 806-810.
[30] Y. Koike, T. Takeshi and S. Ueha, “Derivation of a force equation for a Langevin-type flexural mode transducer,” Japanese Journal Applied Physics, Vol. 35, 1996, pp.3274-3280.
[31] J. G. Smits, W. Choi and A. Ballato, “ Resonance and antiresonance of symmetric and asymmetric cantilevered piezoelectric flexors,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 44, 1997, pp. 250-257.
[32] R. Perez, E. Minguella and A. Gorri, “Weak nonlinearities in piezoelectric transducers equivalent circuits,” IEEE Ultrasonic Symposium, 1998, pp. 247-250.
[33] K. Sakurai, K. Ohnishi and Y. Tomikawa, “Presentation of a new equivalent circuit of a piezoelectric transformer under high-power operation,” Japanese Journal Applied Physics, Vol. 38, 1999, pp. 5592-5597.
[34] D.H. Turnbull, M.D. Sherar and F.S. Foster, “Determination of electromechanical coupling coefficients in transducer materials with high mechanical losses,” IEEE Ultrasonic Symposium, 1988, pp. 631-634.
[35] L. Shuyu, “Study on the mutifrequency Langevin ultrasonic transducer,” Ultrasonics, Vol. 33, 1995, pp. 445-448.
[36] M. Aoyagi and Y. Tomikawa, “Simplified equivalent circuit of ultrasonic motor and its application to estimation of motor characteristics,” Japanese Journal Applied Physics, Vol. 34, 1995, pp. 2752-2755.
[37] M. Aoyagi, Y. Tomikawa and T. Takano, “Simplified equivalent circuit of an ultrasonic motor and its applications,” Ultrasonics, Vol. 34, 1996, pp. 275-278.
[38] Y. Koike, T. Tamura and S. Ueha, “Electrical equivalent circuit of loaded thick a Langevin flexural transducer,” Japanese Journal Applied Physics, Vol. 36, 1997, pp. 3121-3125.
[39] N. Mohan, T.M. Undeland and W.P. Robbins, Power Electronics: Converter, Application and Design, John Wiley & Sons, New York, 1995, p. 212.
[40] G.C. Hsieh, C.H. Lin, J.M. Li and Y.C. Hsu, “A study of series-resonant DC/AC inverter,” IEEE Transactions on Power Electronics, Vol. 11, 1996, pp. 641-652.
[41] L. Rossetto, “A simple control technique for series resonant converters,” IEEE Transactions on Power Electronics, Vol. 11, 1996, pp. 554-560.
[42] G. Hua and F.C. Lee, “Soft-switching techniques in PWM converters,” IEEE Transactions on Industry Electronics, Vol. 42, 1995, pp. 595-603.
[43] Y. Hashimoto, Y. Koike, S. Ueha, Acoustic levitation of planar objects using a longitudinal vibration mode, Journal Acoustic Society Japanese (E), Vol. 16(3), 1995, pp.139-192.
[44] S. Ueha, Y. Hashimoto, Y. Koike, Ultrasonic actuators using near-field acoustic levitation, IEEE Ultrasonics Symposium, 1998, pp.661-666.
[45] B. Chu, R. E. Apfel, Acoustic radiation pressure produced by a beam of sound, Journal Acoustic Society American, Vol. 72(6), 1982, pp.1673-1687.
[46] K.-T. Chang and M. Ouyang, Piezoelectric Actuating Clutch, Invention Paten, Taiwan, R.O.C. (Submitted on September 20, 2002)
[47] M. Ouyang and K.-T. Chang, 2001, “Drive and characterization of a single-phase ultrasonic motor,” in R.O.C. Symposium on Electrical Power Engineering, pp. 1021-1025.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔