跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/14 18:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李懷陽
研究生(外文):Li, Haui Yang
論文名稱:雙平行矽質微通道沸騰熱傳之探討
論文名稱(外文):A Study of Heat Transfer Boiling in two parallel Silicon base Microchannels
指導教授:潘欽曾繁根曾繁根引用關係
指導教授(外文):Pan, ChinTseng, Fan Gang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:86
中文關鍵詞:微通道沸騰熱傳流動型態不穩定現象
外文關鍵詞:microchannelsheat transfer boilingflow patternsinstability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
本研究採用的工作流體為去離子水,以注射式定量幇浦(Syringe pump)將工作流體注入測試段,在測試段前後各連接T-type熱電偶、進口絕對壓力計與差壓計,並在測試段上方裝置高速攝影機。本研究利用這些裝備來觀察流譜、進出口溫度與通道壓降的相對變化,探討微通道內的沸騰熱傳與雙相流機制。
本研究氣泡成長速率約在0.04~20 mm/sec內,遠小於相同熱傳情況下傳統大管徑的氣泡成長速率。此外,微通道氣泡成核速率呈線性成長,這也與Cooper的成核氣泡成長半徑也隨時間成開根號變化有所出入。又微通道內的壓力變化,對成核氣泡脫離尺寸與彈狀氣泡成長皆有顯著的影響。此外,通道內的壓力振盪將可能對彈狀氣泡成長有抑制的作用。本研究觀察到兩種新的流動型態,各為逆向蒸汽流與部分乾化彈狀流兩種。逆向蒸汽流會伴隨著進口溫度與壓力降的振盪。而部分乾化彈狀流則會導致熱傳效果變差。

Abstract
This study used de-ionized water that was provided by syringe pump as work fluid. The two-phase flow visualization under a high speed digital video camera which mounted with a microscope. The temperature of inlet and outlet reservoirs, inlet pressure as well as the pressure drop during experiments were recorded and analyzed with flow visualization. We used these data to study the mechanism of boiling heat transfer and two phase flow in microchannels.
For this study, the bubbles’ growth rates are about 0.04~20 mm/sec. It’s much slower than traditional large scale of the same heat transfer condition. Furthermore, the bubbles’ growth rates present as linear growth with time increasing. That doesn’t agree with Cooper’s report that bubbles grow corresponding to radical time increasing. The variations of pressure in microchannels will significantly effect on the bubbles departure size and on the growth of slug flow. Moreover, the vibrations of pressure in microchannels will also depress the growth of slug flow.
In our research, we observed two kinds of flow patterns, which are inversed vapor flow patterns and partial dry out slug flow patterns. Inversed vapor flow pattern will occur with the vibrations of inlet temperature and inlet pressure. And partial dry out slug flow patterns will decrease the ability of heat transfer.

目 錄
頁次
摘要……………………………………………………………………….I
目錄………………………………………………………………………II圖目錄………………………………………………………………….VII
表目錄………………………………………………………………...VIII
第一章 序論……………………………………………………………..1
1.1前言……………………………………………………………… 1
1.2 研究目的…………………………………………………………...2
1.3 研究方法…………………...………………………………………2
1.4 論文架構………………………………..………………………….3
第二章 文獻回顧……………………………………………………..…4
2.1 為微尺度下的沸騰流動型態………………...……………………4
2.2 微通道的不穩定性………………………………………………...5
2.3 微通道成核速度…………………………………………………...6
2.4 其他微通道文獻…………………………………………………...7
第三章 實驗設備與步驟………………………………………………9
3.1 實驗環路相關設備………………………………………………9
3.1.1 環路系統………………………………………………………9
3.1.2 量測與數據擷取系統………………………………………..13
3.1.3 影像擷取與分析設備………………………………………..15
3.2 矽質微通道製作程序…………………………………………….17
3.2.1 設計目的……………………………………………………..17
3.2.2 光罩設計……………………………………………………..18
3.2.3 微通道製程………………………………………………..…18
3.2.4 製程解果與討論……………………………………………22
3.3 實驗方法和步驟………………………………………...………..26
3.3.1 實驗方法……………..………………………………………26
3.3.2 實驗步驟……..………………………………………………27
3.4 熱功率計算……………………………………………………….28
3.5 實驗誤差分析…………………………………………………….32
第四章 結果與討論………………………………..……..……………37
4.1微通道成核分析…………………………………………………...37
4.1.1 氣泡成長過程…………………………………..……………37
4.1.2 氣泡成核速率……………………………………………..…38
4.1.3 氣泡脫離尺寸………………………………………………..40
4.2微通道彈狀流的成長機制……………………………………….53
4.3 微通道沸騰流動型態…………………………………………….62
4.3.1逆向蒸汽流與部分乾化彈狀流………………………………62
4.3.2 流場方向的流動型態變化…………………………………..63
4.4 微通道沸騰熱傳與不穩定分析…………………….……………76
4.4.1 微通道的熱傳性質…………………………………………..76
4.4.2 低質量流率下的大幅度振盪………………………………..77
4.4.3 壓降與不穩定性分析………………………………………..78
第五章 結論與建議……………………………………………………85
5.1結論………………………………………………..……………….85
5.2建議………………………………………………………..……….86
參考文獻………………………………………………………………..壹
附錄 A1………………………………………………………………...參
附錄 B2…………………………………..…………..……………..….肆

參 考 文 獻
【1】S.G. Kandlikar, M. Shoji, V.K. Dhir, (2000), “Flow boiling in circular tubes, Handbook of Boiling and Condensation, Taylor and Francis, NY, 2000, Chapter 15.
【2】Satish G. Kandlikar, Shailesh Joshi, and Shurong Tian, 2001, “Effect of channel roughness on heat transfer and fluid flow characteristics at low Reynolds numbers in small diameter tube” 35th National Heat Transfer Conference.
【3】Satish G. Kandlikar, Mark E. Steinke, Shurong Tian, Levi A. Campbell, 2001, “High-Speed photographic observation of flow boiling of water in parallel mini-channels.” 35th National Heat Transfer Conference.
【4】Satish G. Kandlikar, Mark E. Steinke, 2002, “Single-Phase flow characteristics and effect of dissolved gases on heat transfer near saturation conditions in microchannels” ASME International Mechanical Engineering Congress & Exposition.
【5】K. Cornwell, P.A. Kew, October 1992, “Boiling in small parallel channels,” Proceedings of CEC Conference on Energy E.ciency in Process Technology, Athens, Paper 22, Elsevier Applied Sciences, pp. 624-638.
【6】R. Mertz, A. Wein, Groll, 1996, “Experimental investigation of .ow boiling heat transfer in narrow channels,” Calore Technologia 14 (2) 47-54
【7】Lian Zhang, Jae-Mo Koo, Linan Jiang, Kenneth E. Goodson, Juan G. Santiago, Thomas W. Kenny, 2001, “Study of Boiling Regimes and Transient Signal Measurements in Microchannels,” TRANSDUCERS ’01 EUROSENSORS XV.
【8】Lian Zhang, Jae-Mo Koo, Linan Jiang, Mehdi Asheghi, Kenneth E. Goodson, Juan G. Santiago, and Thomas W.Kenny, 2002, “Measurements and Modeling of Two-Phase Flow in MicrochannelsWith Nearly Constant Heat Flux Boundary Conditions. Journal of Microelectromechanical system, VOL. 11, NO. 1, Feb. 2002.
【9】Man Lee, Yiu Ya Woung, Man Wong, and Yitshak Zohar, 2002, “Size and shape effects on two-phase flow instabilities in microchannels,” IEEE.
【10】G. Hetsroni, D. Klein, A. Mosyak, Z.Segal, E. Pogrebnyak, 2003, “Convective boiling in parallel micro-channels,” First International Conference on Microchannels and Minichannels. P59-67.
【11】Peng, X.F.and Peterson, G.P., 1996,”Convective heat transfer and flow friction for
water flow in microchannel structires,” Int. J of Heat Mass Transfer, Vol. 39, No. 12, pp.2599-2608
【12】Peng, X.F., Hu, H.Y. and Wang, B.X., 1998,”Boiling nucleation during liquid flow in microchannels,” Int. J of Heat Mass Transfer, Vol. 41, No. 1, pp.101-106.
【13】Peng, X.F., Liu, D., Lee, D.J. and Wang, B.X., 2000,”Cluster dynamics and fictitious boiling in microchannels,” Int. J of Heat Mass Transfer, Vol. 43, pp.4259-4265.
【14】Valerie Sartre, Mohamed Chaker Zaghdoudi, Monique Lallemand, 2000, “Effect of interfacial Phenomena on evaporative heat transfer in micro heat pipes,” Int. J. Therm. Sci. 39, 498-504.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top