跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/08 04:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊思紓
論文名稱:直接甲醇燃料電池陽極觸媒的製備及電化學特性分析研究
論文名稱(外文):Preparation anode catalyst and electrochemical analysis of direct methanol fuel cell
指導教授:蔡春鴻蔡春鴻引用關係葉宗洸葉宗洸引用關係
指導教授(外文):Dr.Chuen-Horng TsaiDr.Tsung-Kuang Yeh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:燃料電池陽極觸媒電化學
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以膠體法(colloidal)製備直接甲醇燃料電池用之Pt-Ru/C觸媒,嘗試改變觸媒的比例及製程條件(如濃度、溫度的改變)和還原條件,探討在這些製程變數下所得到的觸媒,對於不同甲醇濃度反應的活性,並與E-TEK Pt-Ru/C觸媒及JM Pt/C觸媒做比較。利用穿透式電子顯微鏡(TEM)、X光粉末繞射(XRPD)及氮氣物理吸附(BET)來求得觸媒粒徑、分散度、金屬表面積及金屬顆粒之間的距離,探討這些因素對於電催化活性影響,並用循環伏安法 (Cyclic Voltammetry,CV)來得知甲醇氧化的活性及CO毒化的程度。
由實驗結果得知,還原較完全的觸媒(含氧官能基處理的那一組除外)其顆粒大小約2~3nm,且分散度良好,從TEM及XRD所判定的粒徑都差不多。自製觸媒(Pt/Ru的原子百分比=1:2)在甲醇濃度為1M、2M、3M時的電流-電壓曲線為所有觸媒裡最好,自製觸媒(Pt/Ru的原子百分比=1:1)的性能優於E-TEK Pt-Ru/C觸媒,自製觸媒(Pt/Ru的原子百分比=1:2及 2:1)的性能優於JM Pt/C(20%)。
還原較不完全的觸媒雖然電催化活性較差,但從圖中顯示含有氧化物的Pt會促進的CO的氧化,進而降低毒化的問題。純Pt所求得的金屬表面積比PtRu小,且當Ru的含量漸增(小於66.67%)時則金屬表面積會隨之增加,當Ru的含量66.67%時會有最大的金屬表面積且電催化活性最高,其金屬顆粒之間的距離最小。當觸媒的粒徑愈小時,金屬顆粒之間的距離愈靠近,則觸媒會有較高的電催化活性。

圖目錄
表目錄
第一章 緒論...........................................1
第二章 文獻回顧.......................................3
2.1前言..............................................3
2.2 直接甲醇燃料電池(DMFC)的工作原理.................7
2.3甲醇氧化機制分析..................................8
2.4 DMFC陽極材料....................................10
2.5單金屬觸媒及雙金屬觸媒的製方式...................17
第三章 實驗設備與方法..................................19
3.1 實驗藥品及設備...................................19
3.1.1 實驗藥品.....................................19
3.1.2 實驗設備.....................................20
3.2 實驗方法............................................21
3.2.1 碳黑前處理......................................21
3.2.2 觸媒製備........................................21
3.2.3 電極片製作......................................24
3.2.4 電極性能的量測..................................24
3.3 材料鑑定方法........................................26
3.3.1 穿透式電子顯微鏡(TEM)...........................26
3.3.2 X光粉末繞射(XRPD)..............................27
3.3.3 氮氣物理吸附(BET)...............................27
3.3.4 電流-電壓極化曲線(I-V CURVE)....................29
3.3.5 循環伏安法(Cyclic Voltammetry)..................31
第四章 結果與討論.......................................32
4.1 TEM及XRD 結果.....................................33
4.1.1金屬顆粒間距(inter-particle distance)的影響.....35
4.2 掃描速率對極化曲線的影響...........................47
4.3 極化曲線...........................................52
4.3.1 濃度對極化曲線的影響...........................53
4.4 CV CURVE I-V CURVE 之比較........................62
第五章 結論.............................................72
第六章 未來研究工作.....................................74
第七章 參考文獻.........................................75

[1]化工技術第十卷第六期, 2000.
[2] M. WATANABE,M. UCHIDA and S. MOTOO, J. Electroanal. Chem., 229 (1987) 395-406.
[3] W.R. Grove, Phil.Mag.14, 127-130(1839).
[4] W. Vielstich, Fuel Cells, Wiely/Interscience , London 1965 ,501 pp.
[5] K.B. Prater, J. Power Sources 61 (1996) 105.
[6] S. Gottesfeld , T. Z awodzinski , Adv. Electrochem. Sci. Eng. 5 (1997) 195.
[6] A.K. Shukla , P.A. Christensen, A. Hammet, M.P. Hogarth , J. Power Sources 55 (1995) 87.
[8] D.H. Jung, C.H. Lee, C.S. Kim, D.R. Shin, J. Power Sources 71 (1998) 169.
[9] Linda Carrette, K.Andreas Friedrich, Ulrich Stimming, CHEMPHYCHEM 2000, 1, 190.
[10] 蔡克群,化工技術第十卷第六期, 2000.
[11] Kai Sundmacher , Keith Scott, Chemical Engineering Science 54 (1999 ) 2927-2936.
[12] Jerry C.Huang (ALynn),Micro-Fuel Cell Workshop,2001。
[13] Chang Lee, Chi Woo Lee, Dong ⅡKim, Doo ⅡWan Jung, Chang Soo Kim, Dong Ryul Shin, J. Power Sources 86 (2000) 478-481.
[14] R. Parsons, T. Vandernoot, J. Electroanal. Chem. 257 (1988) 9.
[15] V.S. Bagotzky, Y.B. Vassiliev, O.A. Khazov, J. Electroanal. Chem. 81 (1977) 229.
[16] Peter M. Unett Funke, Jens T. Muller, Michael Himmen, Andreas Doctor, Applied Catalysis A: General 221 (2001) 459-470.
[17] J. Muller, PH.D. thesis, RWTH Aachen, 1997.
[18] H.A. Gasteiger, N.M. Markovi, P.N. Ross Jr., E.J. Cairns, J.Electrochem. Soc. 141 (1994) 1795.
[19] B.D. Mcnicol, J.Electroanal. Chem., 118 (1981) 71-87.
[20] T. Iwasita and F.C. Nart, J.Electroanal. Chem., 317 (1991) 291.
[21] M. Krausa, W. Vielstich, J. Electroanal. Chem., 399 (1995) 7-12.
[22] G.T. Burstein, C.J. Barnett, A.R. Kucernak, K.R. Williams, Catalysis Today 38 (1997) 425-437.
[23] S. Swathirajan, Y.M. Mikhail, J. Electroanal. Chem. 138 (1991) 1321.
[24] B.J. KENNEDY, A.W. Smith, J. Electroanal. Chem. 293 (1990) 103.
[25] T. Frelink, W. Visscher, J.A.R. van Veen, Surf. Sci. 335 (1995) 353.
[26] H.A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns, J. Phys. Chem. 97 (1993) 12020.
[27] S. Wasmus, A. Küver, Journal of Electroanalytical Chemistry, 461, (1999) 18.
[28] P.N. Ross, K. Kinoshita, A.J. Scarpellino, P. Stonehart, J. Electroanal. Chem. 63 (1975) 97.
[29] K.V. Ramesh , P.R. Sarode , S. Vasudevan, A.K. Shukla, J. Electroanal. Chem. 223 (1987) 91.
[30] H.P. Dhar, L.G. Christner, A.K. Kush, J. Electrochem. Soc. 134 (1987) 3021.
[31] K. Wang, H.A Gasgdiger, N.M. Markovic, P.N. Ross Jr. electrochim. Acta 41 (1996) 2587-2593.
[32] A. Hamnett, Catalysis Today 38 (1997) 445-457.
[33] R. Liu, K. L. Ley, C. Pu, Q. Fan, N. Leyarovska, C.Segre and E. S. Smotkin, in Electrode Process VI, ed. A. Wieckowski and K. Itaya, PV 96-8, p322, The Electrochemical Society Proceedings Series. Pennington, NJ,1996.
[34] J.A. Kosek, C.C. Cropley and A.B. LaConti, in Electrode Processes VI, ed. A. Wieckowski and K.Itaya, PV 96-8. p322, The Electrochemical society Proceedings series. Pennington, NJ, 1996.
[35] G.L. Troughton and A. Hamnett, Bull. Electrochem. 7 (11), 488 (1991).
[36] A. S. Arico,, Z. Poltarzewki, H. Kim, A.Morana, N. Giordano and V. Antonucci, J. Power sources 55,159 (1995).
[37] Reddington, E,. A. Sapienza, B. Gurau, R. Viswanathan,S. Sarangapani, E.S. Smotkin, T.E. Mallouk, Science,
280 (1998) 1735.
[38] Huyen N. Dinh, Xiaoming Ren, Fernando H . Garzon,
Piotr Zelenay, Shimshon Gottesfeldcells, Journal of Electroanalytical Chemistry 491 (2000) 222-223.
[39] H. A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns, Jr., J. Phys. Chem. 98 (1994) 617.
[40] K.A. Friedrich, K.P. Geyzers, A.J. Dickinson U. Stimming, Journal of Electroanalytical Chemistry 524-525 (2002) 261-272.
[41] E. Herrero, J.M. Feliu, A. Wieckowski, Langmuir 15 (1999) 4944.
[42] Ermete Antolini, Materials Chemistry and Physics 78 (2003) 563-573.
[43] Sang Hoon Joo, Seong Jae Choi, Ilwhan Oh, Juhyoun Kwak, Zheng Liu, Osamu Terasaki, Ryong Ryoo, Nature 412, 169-172 (12Jul 2001).
[44] Akira Koshio, Masako Yudasaka, Sumio Iijima, Chemical Physics Letters 356 (2002) 595-600.
[45] T. Yoshitakea, Y. Shimakawaa, S. Kuroshimaa, H. Kimuraa, T. Ichihashia, Y. Kuboa, D. Kasuyad, K. Takahashic,
F. Kokaic, M. Yudasakab, S. Iijimaa, b,d, Physica B 323 (2003) 124-126.
[46] Francesco Pinna Catalysis Today 41 (1998) 129-137.
[47] E. Antolini, F. Cardellini, Journal of alloys and Compounds 315 (2001) 118-122.
[48] A. HAMNETT, B.J. KENNEDY, AND F. E. WAGNER, Journal of catalysis 124,30-40 (1990).
[49] Pattabiraman, R.,“ Role of Reduction methods in Preparation of High Dispersed Pt-Ru Electrocatalyst Materials for Anodes in Direct Methanol Fuel Cells”, Proc. of The International Symp. On New Materials for Fuel Cells Systems , July, 1995.
[50] E.Antolini, L.Giorgi, F.Cardellini, E.Passalacqua, J.Solid State Electrochem, 5 (2001) 131-140.
[51] Beunauer, S.;Emmett, P.H.;and eller, E., J. Am. Chem. Soc.60, 309 (1938).
[52]“Fuel Cell Handbook (Corporation, October 2000, Fifth Edition)” by EG&G Services Parsons,Ⅰnc, Science Applications International.
[53] 陳德蔭。林昇佃,化工技術第十卷第六期, 2000.
[54] Rodgiguez-Reinoso,F.,I.Rodriguez-Ramos,C.Moreno-Castil,
A.Guerrero-Ruiz,andJ.D.Lopez-Gonzalez,J.Catal.,99,17
(1986).
[55] Gamez A, Richard D, Gallezot P. Electrohim Acta 1995;41:307.
[56] Gu-Gon Park,Tae-Hyun Yang,Young-Gi YOON,Won-Yong Lee,Chang-Soo Kim.International journal Hydrogen Energy 28(2003)645-650.
[57] H. Dohle , J. Divisek, R.Jung, Journal of power sources,1999.
[58] Rauhe B. R,Mclarnon Jr F. R.,Carns E. J,”Direct Anodic
oxidation of Methanol on Surpported Platinum/RutheniumCatalyst in Aqueous Cesium Carbonate”,J Electrochem
Soc.,142,1073(1995).
[59] Freelink T.,Visscher W,Cox A. P. et al.,”Ellipsometry and DEMS study of the electrooxidation of methanol at Ptand Ru and Sm-promrted Pt”,Electrochimica Acta,40,
1537(1995).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top