|
[1] P. F. Heelis, in: F. Müller (Ed.), Flavins and Flavoproteins, CRC Press, Boca Raton, FL, (1991) 171. [2] T. R. I. Cataldi, D. Nardiello, G. E. De Benedetto, S. A. Bufo, Optimizing separation conditions for riboflavin, flavin mononucleotide and flavin adenine dinucleotide in capillary zone electrophoresis with laser-induced fluorescence detection, J. Chromatogr. A 968 (2002) 229. [3] F. Valls, M. T. Sancho, M. A. fernández-Muiño, M. A. Checa, Determination of total riboflavin in cooked sausages, J. Agric. Food Chem. 47 (1999) 1067. [4] C. D. Capo-chichi, J.-L. Guéant, F. Feillet, F. Namour, M. Vidailhet, Analysis of riboflavin and riboflavin cofactor levels in plasma by high-performance liquid chromatography, J. Chromatogr. B 739 (2000) 219. [5] S. Hustad, P. M. Ueland, J. Schneede, Quantification of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma by capillary electrophoresis and laser-induced fluorescence detection, Clin. Chem. 45:6 (1999) 862. [6] T. R. I. Cataldi, D. Nardiello, L. Scrano, A. Scopa, Assay of riboflavin in sample wines by capillary zone electrophoresis and laser-induced fluorescence detection, J. Agric. Food Chem. 50 (2002) 6643. [7] J. H. Wassink, S. G. Mayhew, Fluorescence titration with apoflavodoxin: a sensitive assay for riboflavin 5’-phosphate and flavin adenine dinucleotide in mixtures, Anal. Biochem. 68 (1975) 609. [8] J. A. Tillotson, M. M. Bashor, Fluorometric apoprotein titration of urinary riboflavin, Anal. Biochem. 107 (1980) 214. [9] M. G. Duyvis, R. Hilhorst, C. Laane, D. J. Evans, D. J. M. Schmedding, Role of riboflavin in beer flavor instability: determination of levels of riboflavin and its origin in beer by fluorometric apoprotein titration, J. Agric. Food Chem. 50 (2002) 1548. [10] W. Tong, E. S. Yeung, Simple double-beam absorption detection systems for capillary electrophoresis based on diode lasers and light-emitting diodes, J. Chromatogr. A 718 (1995) 177. [11] Q. Lu, G. E. Collins, Microchip separations of transition metal ions via LED absorbance detevtion of their PAR complexes, Analyst 126 (2001) 429. [12] Q. Lu, G. E. Collins, Microfabricated capillary electrophoresis sensor for uranium (VI), Anal. Chim. Acta 436 (2001) 181. [13] S. L. Wang, X. J. Huang, Z. L. Fang, A miniaturized liquid core waveguide-capillary electrophoresis system with flow injection sample pntroductuin and fluorometric detection using light-emitting diodes, Anal. Chem. 73 (2001) 4545. [14] N. Vachirapatama, P. Doble, Z. Yu, M. Macka, P. R. Haddad, Separation of niobium (V) and tantalum (V) as ternary complexes with citrate and metallochromic ligands by capillary electrophoresis, Anal. Chim. Acta 434 (2001) 301. [15] P. A. G. Butler, B. Mills, P. C. Hauser, Capillary electrophoresis detector using a light emitting diode and optical fibres, Analyst 122 (1997) 949. [16] K. Uchiyama, W. Xu, J. Qiu, T. Hobo, Polyester microchannel chip for eoectrophoresis-incorporation of a blue LED as light source, Fresen. J. Anal. Chem. 371 (2001) 209. [17] S.-C. Wang, M. D. Morris, Plastic microchip electrophoresis with analyte velocity modulation. Application to fluorescence background rejection, Anal. Chem. 72 (2000) 1448. [18] J. C. Bates, Bioavailability of riboflavin, Eur. J. Clin. Nutr. 51 (1997) 38. [19] V. Massey, Activation of molecular oxygen by flavins and flavoproteins, J. Biol. Chem. 269 (1994) 22459. [20] P. C. Hu, B. H. Chen, Effects of riboflavin and fatty acid methyl esters on cholesterol oxidation during illumination, J. Agric. Food Chem. 50 (2002) 3572. [21] I. Siddiqui, K. S. Pitre, Voltammetric determination of vitamins in a pharmaceutical formulation, J. Pharm. Biomed. Anal. 26 (2001) 1009. [22] J. P. Hart, Polarographic and Voltammetric Techniques and Their Application to the Determination of Vitamins and Coenzymes, Trends Anal. Chem. 5 (1986) 20. [23] C. Y. W. Ang, F. A. Moseley, Determination of thiamin and riboflavin in meat and meat products by high-pressure liquid chromatography, J. Agric. Food Chem. 28 (1980) 483. [24] Analytical Methods Committee, Analyst 125 (2000) 353. [25] C. Andréa, F. Mattivi, D. Tonon, Determination of riboflavin flavin minonucleotide and flavinadenine dinucleotide in wine and other beverages by hight-performance liquid chromatography with fluorescence detection, J. Chromatogr. A 823 (1998) 355 [26] F. Arella, S. Lahély, J. B. Bourguignon, C. Hasselmann, Liquid chromatographic determination of vitamins B1 and B2 in foods. A collaborative study, Food Chem. 56 (1996) 81. [27] A. Gliszczyńska-Świgło, A. Koziołowa, Chromatographic determination of riboflavin and its derivatives in food, J. Chromatogr. A 881 (2000) 285. [28] A. Gliszczyńska-Świgło, A. Koziołowa, Chromatographic identification of a new flavin derivate in plain yogurt, J. Agric. Food Chem. 47 (1999) 3197. [29] A. Gliszczyńska-Świgło, A. Koziołowa, Chromatographic determination of flavin derivates in baker’s yeast, J. agric. Food Chem. 822 (1998) 59. [30] F. Mattivi, A. Monetti, U. Vrhovšeket, D. Tonon, C. Andrés- Lacueva, High-performance liquid chromatographic determination of the riboflavin concentration in white wines for predicting their resistance to light, J. Chromatogr. A 888 (2000) 121. [31] L. Fotsing, M. Fillet, I. Bechet, Ph. Hubert, J. Crommen, Determination of six water-soluble vitamins in a pharmaceutical formulation by capillary electrophoresis, J. Pharm. Biomed. Anal. 15 (1999) 1113. [32] P. Moreno, V. Salvadó, Determination of eight water- and fat-soluble vitamins in multi-vitamin pharmaceutical formulations by high-performance liquid chromatography, J. Chromatogr. A 870 (2000) 207. [33] M.-J. Esteve, R. Farré, A. Frígola, J.-M. García-Cantabella, Simultaneous determination of thiamin and riboflavin in mushrooms by liquid chromatography, J. Agric. Food Chem. 49 (2001) 1450. [34] L. F. Russell, L. Brooks, K. B. McRae, Development of a robotic-HPLC determination of riboflavin vitaminers in food, Food Chem. 63 (1997) 125. [35] S. M. Fernaddo, P. A. Murphy, HPLC determination of thiamin and riboflavin in soybeans and tofu, J. Agric. Food Chem. 38 (1990) 163. [36] R. L. Wehling, D. L. Wetzel, Simultaneous determination of pyridoxine, riboflavin, and thiamin in fortified cereal products by high-performance liquid chromatography, J. Agric. Food Chem. 32 (1984) 1326. [37] T. Pérez-Ruiz, C. Martínez-Lozano, A. Sanz, E. Bravo, Determination of riboflavin, flavin mononucleotide and flvin adenine dinucleotide in biological tissues by capillary zone electrophoresis and laser-induced fluorescence detection, Electrophoresis 22 (2001) 1170. [38] P. Britz-McKibbin, K. Otsuka, S. Terabe, On-line focusing of flavin derivatives using dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection, Anal. Chem. 74 (2002) 3736. [39] M. S. Bellini, G. Manetto, Z. Deyl, F. Tagliaro, I. Mikšík, Capillary electrophoresis separation of vitamins in sodium dodecyl sulfate containing buffers with lower aliphatic alcohols and n-hexane as organic modifiers, J. Chromatogr. B 741 (2000) 67. [40] S. Buskov, P. Møller, H. Sørensen, J. C. Sørensen, S. Sørensen, Determination of vitamins in food based on supercritical fluid extraction prior to micellar electrokinetic capillary chromatographic analyses of induvidual vitamins, J. Chromatogr. A 802 (1998) 233. [41] M. M. Delgado-Zamarreño, I. González-Maza, A. Sánchez-Pérez, R. Carabias-Martinez, Separation and simultaneous determination of water-soluble and fat-soluble vitamins by electrokinetic capillary chromatography, J. Chromatogr. A 953 (2002) 257. [42] D. S. Burgi, Large volume stacking of anions in capillary electrophoresis using an electroosmitic flow modifier as a pump, Anal. Chem. 65 (1993) 3726. [43] J. P. Quirino, S. Terabe, Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromatography, Science 282 (1998) 465. [44] P. Britz-McKibbin , A. R. Kranack, A. Paprica, D. D. Y. Chen, Quantitative assay for epinephrine in dental anesthetic solutions by capillary electrophoresis, Analyst 123 (1998) 1461. [45] F. Kohlrausch, Wiedemanns, Ueber Concentrations- Verschiebungen durch Electrolyse im Inneren von Lösungen und Lösungsgemischen, Ann. Phys. Chem. 62 (1897) 209. [46] A. Tiselius, A new apparatus for electrophoretic analysis of colloidal mixtures, Trans. Faraday Soc. 33 (1937) 524. [47] S. Hjerten, Free zone electrophoresis, Chromatogr. Rev 9 (1967) 122. [48] R. Virtanen, Acta Polym. Sin. 123 (1979) 1. [49] J. W. Joegenson, K. D. Lukacs, J. Chromatogr. 218 (1981) 209. [50] J. W. Joegenson, K. D. Lukacs, Zone electrophoresis in open-tubular glass capillaries, Anal. Chem. 53 (1981) 1298. [51] D. J. Rose, J. W. Joegenson, Characterization and automation of sample introduction methods for capillary zone electrophoresis, Anal. Chem. 60 (1988) 1840. [52] K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Electrokinetic separations with micellar solutions and open-tubular capillaries, Anal. Chem. 56 (1984) 111. [53] S. Terabe, K. Otsuka, T. Ando, Electrokinetic chromatography with micellar solution and open-tubular capillary, Anal. Chem. 57 (1985) 834. [54] K. H. Row, W. H. Griest, M. P. Maskarienc, J. Chromatogr. 409 (1987) 193. [55] S. Hjerten, M. D. Zhu, Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing, J. Chromatogr. 346 (1985) 265. [56] S. Hjerten, J. L. Liao, K. Yao, Theoretical and experimental study of high performance electrophoreticmobilization of isoelectric focused protein zones, J. Chromatogr. 387 (1987) 127. [57] A. Cohen, B. L. Karger, High-performance sodiumdodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins, J. Chromatogr. 397 (1987) 409. [58] X. Huang, R. N. Zare, Improved end-column conductivity detector for capillary zone electrophoresis, Anal. Chem. 63 (1991) 2193. [59] R. D. Holland, M. J. Sepaniak, Qualitative analysis for mycotoxins using micellar electrokinetic capillary chromatography, Anal. Chem. 65 (1993) 1140. [60] X. Huang, M. J. Gordon, R. N. Zare, Bias in quantitative capillary zone electrophoresis caused by electrokinetic sample injection, Anal. Chem. 60 (1993) 375. [61] R. T. Kennedy, J. W. Gorgenson, Preparation and evaluation of packed capillary liquid chromatography columns with inner diameters from 20 to 50 micrometers, Anal. Chem. 61 (1989) 1128. [62] M. M. Dittmann, G. P. Rozing, Capillary electrochromatography - a high-efficiency micro-separation technique, J. Chromatogr. A 744 (1996) 63. [63] C. Y. Yan, R. Dadoo, R. N. Zare, D. J. Rakestraw, D. S. Anex, Thermal analysis, Anal. Chem. 68 (1996) 63. [64] D. N. Heiger, Hewlett-Packard Company Publication Number 12-5091-6199E. [65] H. Z. Helmholtz, Anal. Phys. Chem. 7 (1897) 337. [66] B. Krattiger, G. J. M. Bruin, A. E. Bruin, Hologram-based refractive index detector for capillary electrophoresis: separation of metal ions, Anal. Chem. 66 (1994) 1. [67] M. Stefansson, M. Novotny, Separation of complex oligosaccharide mixtures by capillary electrophoresis in the open-tubular format, Anal. Chem. 66 (1994) 1134. [68] Y. Kim, M. D. Morris, Separation of nucleic acids by capillary electrophoresis in cellulose solutions with mono- and bisintercalating dyes, Anal. Chem. 66 (1994) 1168. [69] Z. Zhzo, A. Malik, M. L. Lee, Adsorption on polymer-coated fused-silica capillary electrophoresis columns using selected protein and peptide standards, Anal. Chem. 65 (1994) 2747. [70] A. J. G. Mank, E. S. Yeung, Diode laser-induced fluorescence detection in capillary electrophoresis after pre-column derivztization of amino acids and small peptides, J. Chromatogr. A 708 (1995) 309. [71] S. V. Rahavendran, H. T. Karnes, Visible diode laser-induced fluorescence detection of phenylacetic acid in plasma derivatized with nile blue and using pre-column phase transfer catalysis, Anal. Chem. 69 (1997) 3022. [72] D. L. Gallaher Jr., M. E. Johnson, Development of near-infrared fluorophoric labels for the determination of fatty acids separated by capillary electrophoresis with diode laser induced fluorescence detection, Analyst 124 (1999) 1541. [73] A. J. G. Mank, H. Lingeman, C. Gooijer, Diode laser-based detection in liquid chromatography and capillary electrophoresis, Trends Anal. Chem. 15(1) (1996) 1. [74] B. L. Legndre Jr., D. L. Moberg, D. C. Williams, S. A. Soper, Ultrasensitive near-infrared laser-induced fluorescence detection in capillary eoectrophoresis using a diode laser and avalanche photodiode, J. Chromatogr. A 779 (1997) 185. [75] N. Kuroda, R. Nomura, O. Al-Dirbashi, S. Aliyama, K. Nakashima, Determination of methamphetamine and related compounds by capillary electrophoresis with UV and laser-induced fluorescence detection, J. Chromatogr. A 798 (1998) 325. [76] T. Kaneta, H. Shiba, T. Imasaka, Determination of cyanine-labeled amino acid enantiomers by cyclodextrin-modified capillary gel electrophoresis combined with diode laser fluorescence detection, J. Chromatogr. A 805 (1998) 295. [77] J. E. Melanson, C. A. Boulet, C. A. Lucy, Indirect laser-induced fluorescence detection for capillary electrophoresis using a violet diode laser, Anal. Chem. 73 (2001) 1809. [78] J. E. Melanson, C. A. Lucy, Violet (405 nm) diode laser for laser induced fluorescence detection in capillary electrophoresis, Analyst 125 (2000) 1049. [79] S. E. Moring, R. T. Reel, E. J. S. Remco, Optical improvements of a Z-shaped cell for high-sensitivity UV absorbance detection in capillary electrophoresis, Anal. Chem. 65 (1993) 3454. [80] J. P. Quirino, S. Terabe, K. Otsuka, J. B. Vincent, G. Vigh, Sample concentration by sample stacking and sweeping using a microemulsion and a single-isomer sulfated β-cyclodextrin as pseudostationary phases in electrokinetic chromatography, J. Chromatogr. A 838 (1999) 3. [81] J. P. Quirino, S. Terabe, Sample stacking of cationic and anionic analytes in capillary electrophoresis, J. Chromatogr. A 902 (2000) 119. [82] R.-L. Chien, in: M. G. Khaledi, (Ed.), High Performance Capillary Electrophoresis (Theory, Techniques and Applications), Chapter 13, CRC Press, (1998). [83] Z. Liu, P. Sam, S. R. Sirimanne, P. C. McClure, J. Grainger, D. G. Patterson, Field-amplified sample stacking in micellar electrokinetic chromatography for on-column sample concentration of neutral molecules, J. Chromatogr. A 673 (1994) 125. [84] K. R. Nielson, J. P. Foley, Zone sharpening of neutral solutes in micellar electrokinetic chromatography with electrokinetic injection, J. Chromatogr. A 686 (1994) 283. [85] J. P. Quirino, S. Terabe, On-line concentration of neutral analytes for micellar electrokinetic chromatography I. Normal stacking mode, J. Chromatogr. A 781 (1997) 119. [86] C.-X. Zhang, W. Thormann, Head-column field-amplified sample stacking in binary system capillary electrophoresis. 2.optimization with a pre-injection plug and application to micellar electrokinetic chromatography, Anal. Chem. 70 (1998) 540. [87] Z. K. Shihabi, Stacking of weakly cationic compounds by acetonitrile for capillary electrophoresis, J. Chromatogr. A 817 (1998) 25. [88] J. Palmer, N. J. Munro, J. P. Landers, A universal concept for stacking neutral analytes in micellar capillary electrophoresis, Anal. Chem. 71 (1999) 1679. [89] J. P. Quirino, S. Terabe, Approaching a million-fold sensitivity increase in capillary electrophoresis with direct ultraviolet detection: cation-selective exhaustive injection and sweeping, Anal. Chem. 72 (2000) 1023. [90] J. P. Quirino, S. Terabe, Sweeping of analyte zones in electrokinetic chromatography, Anal. Chem. 71 (1999) 1638. [91] J. P. Quirino, J.-B. Kim, S. Terabe, Sweeping: concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis, J. Chromatogr. A 357 (2002) 357. [92] Y. Takagai, S. Igarashi, UV-detection capillary electrophoresis for benzo[a]pyrene and pyrene following a two-step concentration system using homogeneous liquid-liquid extraction and a sweeping method, Analyst 126 (2001) 551. [93] M. R. N. Monton, J. P. Quirino, K. Otsuka, S. Terabe, Separation and on-line preconcentration by sweeping of charged analytes in electrokinetic chromatography with nonionic micelles, J. Chromatogr. A 939 (2001) 99. [94] R. B. Taylor, R. G. Reid, A. S. Low, Analysis of proguanil and its metabolites by application of the sweeping technique in micellar electrokinetic chromatography, J. Chromatogr. A 916 (2001) 201. [95] C. Fang, J.-T. Liu, C.-H. Lin, Optimization of the separation of lysergic acid diethylamide in urine by a sweeping technique using micellar electrokinetic chromatography, J. Chromatogr. B 775 (2002) 37. [96] C. Fang, J.-T. Liu, C.-H. Lin, Determination of lysergic acid diethylamide (LSD) by application of on-line 77K fluorescence spectroscopy and a sweeping technique in micellar electrokinetic chromatography, Talanta 58 (2002) 691. [97] M. J. Markuszewski, P. Britz-McKibbin, S. Terabe, K. Matsuda, T. Nishioka, Determination of pyridine and adenine nucleotide metabolites in Bacillus subtilis cell extract by sweeping borate complexation capillary electrophoresis, J. Chromatogr. A 989 (2003) 293. [98] C.-H. Wu, M.-C. Chen, A.-K. Su, P.-Y. Shu, S.-H. Chou, C.-H. Lin, Determination of corticosterone in mouse plasma by a sweeping technique using micellar electrokinetic chromatography, J. Chromatogr. B 785 (2003) 317. [99] M. R. N. Monton, K. Otsuka, S. Terabe, On-line sample preconcentration in micellar electrokinetic chromatography by sweeping with anionic-zwitterionic mixed micelles, J. Chromatogr. A 985 (2003) 435. [100] J. P. Quirino, S. Terabe, Sample stacking of fast-moving anions in capillary zone electrophoresis with pH-suppressed electroosmotic flow, J. Chromatogr. A 850 (1999) 339. [101] Z. K. Shihabi, Peptide stacking by acetonitrile-salt mixtures for capillary zone elecrophoresis, J. Chromatogr. A 744 (1996) 231. [102] D. Martínez, F. Borrull, M. Calull, Sample stacking using field-amplified sample injection in capillary zone electrophoresis in the analysis of phenolic compounds, J. Chromatogr. A 788 (1997) 185. [103] R. Kuldvee, M. Kaljurand, Stacking form the sample stream in CZE using a pneumatically driven computerized sampler, Anal. Chem. 70 (1998) 3695. [104] Y. He, H.-K. Lee, Large-volume sample stacking in acidic buffer for analysis of small organic and inorganic anions by capillary electrophoresis, Anal. Chem. 71 (1999) 995. [105] J. Palmer, J. P. Landers, Stacking neutral analytes in capillary electrokinetic chromatography with high-salt sample matrixes, Anal. Chem. 72 (2000) 1941. [106] S. Locke, D. Figeys, Techniques for the optimization of proteomic strategies based on head column stacking capillary electrophoresis, Anal. Chem. 72 (2000) 2684. [107] W.-H. Ding, C.-H. Liu, Analysis of linear alkylbenzenesulfonates by capillary zone electrophoresis with large-volume sample stacking, J. Chromatogr. A 929 (2001) 143. [108] C.-X. Cao, Y.-Z. He, M. Li, Y.-T. Qian, M.-F. Gao, L.-H. Ge, S.-L. Zhou, L. Yang, Q.-S. Qu, Stacking ionizable analytes in a sample matrix with high salt by a transient miving chemical reaction boundary method in capillary zone electrophoresis, Anal. Chem. 74 (2002) 4167. [109] J.-B. Kim, K. Otsuka, S. Terabe, Anion selective exhaustive injection-sweep-micellar electrokinetic chromatography, J. Chromatogr. A 932 (2001) 129. [110] L. Zhu, H.-L. Lee, Field-amplified sample injection combined with water removal by electroosmotic flow pump in acidic buffer for analysis of phenoxy acid herbicides by capillary electrophoresis, Anal. Chem. 73 (2001) 3065. [111] L. Zhu, C. Tu, H.-K. Lee, On-line concentration of acidic compounds by anion-selective exhaustive injection-sweeping micellar electrokinetic chromatography, Anal. Chem. 74 (2002) 5820. [112] J. P. Quirino, U. Iwai, K. Otsuka, S. Terabe, Determination of environmentally relevant aromatic amines in the ppt levels by cation selective exhaustive injection-sweeping-micellar electrokinetic chromatography, Electrophoresis 21(14) (2000) 2899. [113] O. Núñez, J.-B. Kim, E. Moyano, M. T. Galceran, S. Terabe, Analysis of the berbicides paraquat, diquat and difenzoquat in drinking water by micellar electrokinetic chromatography using sweeping and cation selective exhaustive injection, J. Chromatogr. A 961 (2002) 65. [114] P. Britz-McKibbin, G. M. Bebault, D. D. Y. Chen, Velocity-difference induced focusing of nucleotides in capillary electrophoresis with a dynamic pH junction, Anal. Chem. 72 (2000) 1729. [115] P. Britz-McKibbin, J. Wong, D. D. Y. Chen, Analysis of epinephrine from fifteen different dental anesthetic formulations by capillary electrophoresis, J. Chromatogr. A 853 (1999) 535. [116] P. Britz-McKibbin, D. D. Y. Chen, Selective focusing of catecholamines and weakly acidic compounds by capillary electrophoresis using a dynamic pH junction, Anal. Chem. 72 (2000) 1242. [117] W. Wei, G. Xue, E. S. Yeung, One-step concentration of analytes based on dynamic change in pH capillary zone electrophoresis, Anal. Chem. 74 (2002) 934.
|