(3.235.25.169) 您好!臺灣時間:2021/04/20 19:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊勝安
研究生(外文):Sheng-an Yang
論文名稱:以學習環之教學策略探討國中學生溶液相關概念的學習成效
論文名稱(外文):Investigating the Junior High School Students’ Conceptions of Solutions by the Learning Cycle Instructional Strategy
指導教授:黃寶鈿黃寶鈿引用關係
指導教授(外文):Bao-tyan Hwang
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:150
中文關鍵詞:面談示範式群測溶液概念錯誤概念學習環教學學習感受
外文關鍵詞:interviewgroup demonstration testsolution conceptsmisconceptionlearning cycle instructionlearning attitude
相關次數:
  • 被引用被引用:25
  • 點閱點閱:225
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討學生對於溶液相關概念的認知情況以及經過教學後學生的學習情形。研究進行時藉由面談及開放式問卷等方式來瞭解學生對於溶液概念的想法,再以「示範式群測」的測試工具收集資料,並根據學習環之教學策略針對溶液相關概念設計教學活動,藉以幫助學生學習與導正學生既有的錯誤概念,最後再藉由學習興趣暨態度量表的實施,以瞭解學生對於本教學模式之興趣與態度。本研究的對象為國中一年級至三年級學生,分成實驗組與控制組,共計433人。主要的研究結果說明如下:
一、學生對於溶液的基本定義不清楚,習慣用日常生活經驗來解釋溶解現象,並以溶質的巨觀外型來判斷其在溶液中的微觀情況。多數學生受到不同的溶解方式與靜置時間的影響而對溶質均勻分佈與粒子概念產生許多錯誤的想法。而在溶質粒子守恆性概念方面,多數學生認為加熱會讓溶解在溶液中的溶質進一步溶解,因而改變溶質的體積大小與數量多寡。
二、比較年級的認知差異方面,研究主要發現學生在氣體溶質粒子概念、粒子守恆性概念與濃度概念等方面的答對率隨著年級的增加而成長。
三、本教學模式對於實驗組學生溶液相關概念的學習具有正面的幫助,尤其在溶質的粒子觀點以及溶質粒子守恆概念的進步幅度最大。另外,本研究中所取樣的國二學生整體的學習效果比國一好,而國三學生的學習效果則略高於國二學生。
四、從學習感受問卷結果顯示,大部分的實驗組學生對於這次的學習環教學活動感到有興趣且多數持有正面的態度,並認為這個活動的教學內容對於以後學習理化是有幫助的。
The main purpose of this study is to investigate students’ recognition of correlated concepts of solutions. At the beginning of this study, the students’ concepts of solutions were collected by interviews and open-end questions with a group demonstration technique. Then, an instructional strategy for the correlated concepts of solution was designed. At the end of this study, the students’ learning interests and attitude for this teaching model were evaluated by questionnaire. The subjects were 433 students of grade 7 to grade 9 in the junior high schools. They were divided into the experimental and the control groups. The main findings of the study were:
1. Students held unclear concepts about the definition of solution, and they were used to explain dissolution by daily life experience and to describe the microphenomenon of the solutes in solution by the macroscopic point of view of the solutes. Many students were influenced by the different ways of dissolution and had many misconceptions about the concept of homogenous of solute particles. In the conservation concepts of solute particle, many students thought that the volume and numbers of solutes would be changed, because heat made the solute melt further in the solution.
2. Comparing the difference in the recognition of the concepts of solution, conservation and concentration of particles in gaseous solute were progressed as grade growth.
3. Comparing the improvement between the experimental and the control group, it revealed that the instructional model would assist students’ understanding the conceptions of solutions, especially in the particle concept of solute and the conservation concepts of solute particle. Besides, in this research, it found that the effectiveness of teaching for the eight grade students were better than that of seven grade students, and the nine grade students were better than that of the eight grade students.
4. Most students were interesting and assumed a positive attitude toward this learning cycle instructional activities and they thought the contents in this instructional unit would be useful for their learning of physical science in the future.
目 錄
表 目 次 ..........................III
圖 目 次 ............................V
第一章 緒論
第一節 研究動機與目的................1
第二節 名詞解釋與界定................3
第三節 研究限制......................5
第二章 理論基礎與文獻探討
第一節 皮亞傑認知發展理論............7
第二節 錯誤概念與概念診斷...........11
第三節 粒子概念與溶液的錯誤概念.....16
第四節 學習環教學理論...............22
第五節 課程分析.....................30
第三章 研究方法與步驟
第一節 研究對象.....................37
第二節 研究方法與設計...............39
第三節 研究步驟與流程...............42
第四節 研究工具.....................46
第五節 學習環教學活動的內容與設計...50
第四章 結果與討論
第一節 面談與開放式問卷之結果分析....65
第二節 國中學生溶液相關概念之認知情況.................74
第三節 各年級學生對溶液相關概念的認知差異.............93
第四節 學習環教學活動對溶液相關概念的教學成效........107
第五節 學習感受問卷的調查結果分析....................123
第五章 結論與建議
第一節 結論..........................................131
第二節 建議..........................................136
參考文獻
中文部分.............................................139
英文部分.............................................143
附 錄
附錄一:前測工具舉例.................................149
附錄二:後測工具舉例.................................150
中文部分
毛松霖等(民89):國民小學自然科教科書(1∼12冊)。台北市,國立編譯館。
王春源、郭重吉和黃曼麗(民81):物質變化相關概念診斷測驗工具之發展。科學教育,頁241-264。
王美芬、熊召弟(民84):國民小學自然科教材教法。台北市:心理出版社。
王念慈(民88):國小一、二、三年級學童液體量與重量守恆概念發展之教學效果的研究。國立台灣師範大學化學研究所碩士論文。
余民寧(民91):教育測驗與評量-成就測驗與教學評量。台北市:心理出版社。
李武勳(民89):國中學生氣體壓力概念之教學成效探討。國立台灣師範大學師範大學化學研究所碩士論文。
李英志等(民91):國民中學自然與生活科技第一冊。台北縣:康軒出版社。
杜明進(民82):中日國小自然科學「溶解」相關教材之比較。新竹師院學報,7,349-381。
杜明進(民85):日本國小自然科「水溶液的性質」相關教材之研究。新竹師院學報,9,55-82。
邱上峰(民91):以個別化電腦輔助教學探討學生對於氣體粒子概念之學習成效。國立台灣師範大學化學研究所碩士論文。
林曉雯(民89):建構主義教學策略--學習環的基本理念及國小自然科學教學設計舉隅。屏師科學教育,11,43-51。
熊育賢等(民87):國民小學自然科教科書(1∼12冊)。台北縣,康軒出版社。
張新仁(民82):奧斯貝的學習理論與教學應用。教育研究雙月刊,32,31-35。
張春興(民83):教育心理學。台北市:東華書局。
教育部(民90):國民中小學九年一貫課程暫行綱要。台北市:教育部。
教育部網站(http://teach.eje.edu.tw/)
盛承堯(民82):國小自然科學溶液概念及迷思概念之探討。花師數理教育學報,2,1-44。
許健將、郭重吉、李成康(民81):利用二段式測驗探查高三學生有關共價鍵及分子結構之迷思概念。科學教育(彰師),3,175-197。
許榮富(民79):科學概念發展與診斷教學研究合作計畫芻議。科學發展月刊,18(2),150-157。
郭生玉(民85):心理與教育研究法。中和市:精華書局。
郭重吉(民77):從認知觀點探討自然科學的學習。教育學院學報,13,351-378。
郭重吉(民79):學生科學知識認知結構的評估與描述。彰化師範大學學報,1,279-320。
郭重吉等(民91):國民中學自然與生活科技第一冊。台北縣:南一書局。
陳世雄(民81):利用示範式實驗群測法探究國中學生的物質變化概念與重量守恆推理。國立台灣師範大學化學研究所碩士論文。
陳守仁等(民87):國民小學自然科教科書(1∼12冊)。台南市,南一出版社。
陳啟民(民80):發展紙筆測驗以探究高一學生對直流電路的迷思概念。國立彰化師範大學科學教育研究所碩士論文。
陳李綢(民81):認知發展與輔導。台北市:心理出版社。
陳淑美(民78):皮亞傑的智力發展理論。諮商與輔導,47,27-30。
黃慧琳(民84):學習環在國小自然科教學之研究。國立高雄師範大學科學教育研究所碩士論文。
黃湘武、黃寶鈿(民75a):學生空氣概念:粒子性質及動力平衡。中華民國七十四年度科學教育學術研討會論文彙編,1-18。
黃湘武、黃寶鈿(民75b):以示範群測法對我國學生重量與體積守恆推理能力發展之研究。中華民國七十四年度科學教育學術研討會論文彙編,19-34。
黃寶鈿等(民75c):示範式群測法研究學生的守恆概念:排水體積守恆。中華民國七十四年度科學教育學術研討會論文彙編,35-51。
黃寶鈿(民76a):溫度與熱量概念的混淆與辨識。認知與學習研討會專集(第二次),67-94。
黃寶鈿(民76b):示範式群測法研究學生的排水體積守恆概念。測驗年刊,34,137-146。
黃寶鈿(民77):邏輯思考能力評量工具的編製。師大學報,33,485-505。
黃寶鈿、黃湘武(民78):溶液相關概念之認知發展層次的研究(一)。國科會專題研究報告。(NSC78-0111-S003-18D)。
黃寶鈿、黃湘武(民79):溶液相關概念之認知發展層次的研究(二)。國科會專題研究報告。(NSC78-0111-S003-18D)(NSC79-0111-S003-21D)
黃寶鈿(民81):化學概念與認知發展的評量研究。載於國立台灣師範大學學術研究委員會主編:教學評量研究,335-363。台北:五南圖書出版。
黃寶鈿、陳世雄(民82):從重量守恆推理能力探究學生對物質變化的錯誤概念。師大學報,38,175-201。
黃寶鈿(民83):以示範實驗法探究學生的比例推理能力。測驗年刊,41,207-202。
黃寶鈿(民85):認知衝突教學與溶液相關概念的改變。認知與教學學術研討會。嘉義:中正大學。
黃瑞仁(民91):以示範實驗式群測與粒子模型模擬教學探討國中學生對於化學變化的相關概念:以氣體之產生為例。國立臺灣師範大學化學研究所碩士論文。
楊永華、王澄霞(民72):學習環原理在國中理化新教材教學上的應用。科學教育(師大),65,52-56。
楊永華、王澄霞(民73):中小學化學領域中的「溶液」主題單元概念的深廣度與其化學實驗活動之連貫性與適用性之研究。科學教育月刊,75,12-31。
楊純珠(民88):「溶液」多媒體CAL之概念學習研究。國立台灣師範大學化學研究所碩士論文。
葉重新(民90):教育研究法。台北:心理出版社。
葛玟菁(民91):應用粒子模型之模擬教具探討國中學生物質狀態概念之學習成效。國立台灣師範大學師範大學化學研究所碩士論文。
劉元生(民83):實驗教學對於國中學生溶液概念改變的影響。國立臺灣師範大學化學系碩士論文。
劉廣定主編(民89):國民中學理化科教科書(1-4冊)。台北市,國立編譯館。
盧文顯(民81):從粒子模型概念探究學生對於溶液概念之思考模式。國立臺灣師範大學化學研究所碩士論文。
鍾聖校(民83):不同教學法對錯誤概念修正的影響。臺北師院學報,7,169-204。
鍾聖校(民88):自然與科技課程教材教法。台北市:五南圖書出版公司。
英文部分
Abraham, M. R., & Renner, J. W. (1986). The sequence of learning cycle activities in high school chemistry. Journal of Research in Science Teaching, 23(2), 121-143.
Abraham, M. R., Grzybowski, E. B., Renner, J. W., & Mark, E. A. (1992). Understandings and misunderstandings of eighth graders in five chemistry concepts found in textbooks. Journal of Research in Science Teaching, 29(2), 105-120.
Abraham, M. R., Williamson, V. M., & Westbrook, S. L. (1994). A cross-age study of the understanding of five chemistry concepts. Journal of Research in Science Teaching, 31(2), 147-165.
Andersson, B. (1990). Pupils’ conceptions of matter and its transformations (age 12-16). Studies in Science Education, 18, 53-85.
Blanco, A., & Prieto, T. (1997). Pupils’ views on how stirring and temperature affect the dissolution of a solid in a liquid: a cross-age study (12 to 18). International Journal of Science Education, 19(3), 303-315.
Brumby, M. (1984). Misconceptions about the concept of natural selection by medical biology students. Science Education, 68(4), 493-503.
Bunce, D. M., & Gabel, D. (2002). Differential effects on the achievement of males and females of teaching the particulate nature of chemistry. Journal of Research in Science Teaching, 39(10), 911-927.
Driver, R. (1985). Beyond appearances: The conservation of matter under physical and chemical transformation. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children’s ideas in Science(145-169). Milton Keynes: Open University Press.
Driver, R., & Erickson, G. (1983). Theories in action: some theoretical and empirical issues in the study of stdents conceptual frameworks in science. Studies in Science Education, 10, 37-60.
Duit, R., Treaguest, D. F., & Mansfield, H. (1996). Investigating student understanding of science and mathematics. In D. Treaguest, R. Duit, & B. J. Fraser (Eds.), Improving Teaching and Learning in Science and Mathematics (17-31). New York: Teacher College Press.
Ebenezer, J. V., & Gaskell, P. J. (1995). Relational conceptual change in solution chemistry. Science Education, 79(1), 1-17.
Ebenezer, J. V., & Erickson, G. L. (1996). Chemistry students’ conceptions of solubility: a phenomenography. Science Education, 80(2), 181-201.
Ebenezer, J. V. (2001). A hypermedia environment to explore and negotiate student’s conceptions : animation of solution process of table salt. Journal of Science Education and Technology, 10(1), 73-92.
Gabel, D. L., Samuel, K. V., & Hunn, D. (1987). Understanding the particulate nature of matter. Journal of Chemical Education. 64(8), 695-697.
Gabel, D. L. (1993). Use of the particle nature of matter in developing conceptual understanding. Journal of Chemical Education, 70, 193-194.
Gilbert, J., & Osborne, R. (1982). Childrens’ science and it’s consequences for teaching. Science Education, 66(4), 623-633.
Haslam, F., & Treagust, D. F. (1987). Diagnosing secondary students'''' misconceptions of photosynthesis and respiration in plants using a two-tier multiple choice instrument. Journal of Biological Education, 21(3), 203-211.
Hwang, B. T., & Lee, W. H. (2001, July). An alternative evaluation with miniaturized apparatus in facilitating particulate concept acquisitions. Paper presented at the CONASTA 50th Conference (The 50th Conference of the Australian Science Teachers’ Association). Sydney, New South Wales, Australia.
James, H. J., & Nelson, S. L. (1981). A classroom learning cycle: using diagrams to classify matter. Journal of chemical Education, 58(6), 476-477.
Johnson, P. (1998a). Progression in children''''s understanding of a ‘basic’ particle theory: a longitudinal study. International Journal of Science Education, 20(4), 393-412.
Johnson, P. (1998b). Children''''s understanding of changes of state involving the gas state, Pant 1: Boiling water and the particle theory. International Journal of Science Education, 20(5), 567-584.
Johnson, P. (1998c). Children''''s understanding of changes of state involving the gas state, Part 2: Evaporation and condensation below boiling point. International Journal of Science Education, 20(6), 695-710.
Johnson, P. (2000). Children’s understanding of substances, part 1 : recognizing chemical change. International Journal of Science Education, 22(7), 719-737.
Johnson , P. (2002). Children’s understanding of substances, part 2 : explaining chemical change . International Journal of Science Education. 24(10), 1037-1054.
Kearney, M., Treagust, D. F., Yeo, S., & Zadnik, M. G. (2001). Student and teacher perceptions of the multimedia supported predict-observe-explain tasks to probe understanding. Research in science education, 31, 589-615.
Karplus, R. (1977). Science teaching and the development of reasoning. Journal of Research in Science Teaching, 14(2), 169-175.
Lawson, A. E, Abraham, M. R., & Renner , J. W. (1989). A theory of instruction : using the learning cycle to teach science concepts and thinking skills. NARST monograph, 1.
Lawson, A. E. (2000). A learning cycle approach to introducing osmosis. The American Biology Teacher, 62(3), 189-196.
Lawson, A. E. (2001). Using the learning cycle to teaching biology concepts and reasoning patterns. Journal of Biological Education, 35(4), 165-169.
Mayer, R. E. (1999). Multidmedia aids to problem-solving transfer. International Journal of Educational Research, 31, 611-623.
Mintzes, J. J., & Wandersee, J. H. (1998). Reform and innovation in science teaching: a human constructivist view. In J. J. Mintzes, J. H.Wandersee, & J. D. Novak (Eds), Teaching Science for Understanding: A Human Constructivist View(29-58). San Diego: Academic.
Novick, S. N., & Nussbaum, J. (1978). Junior high school pupils’ understanding of the particulate nature of matter : an interview study. Science Education, 62(3), 273-281.
Novick, S., & Nussbaum, J. (1981). Pupils’ understanding of the particulate nature of matter: a cross-age study. Science Education, 65(2), 187-196.
Odom, A. L., & Kelly, P. V. (2001). Integrating concept mapping and the learning cycle to teach diffusion and Osmosis concepts to high school biology students. Science Education, 85(6), 615-635.
Osborne, R. J., & Cosgrove, M. M. (1983). Children’s conceptions of the changes of state of water. Journal of Research in Science Teaching, 20(9), 825-838.
Otaala, B. (1973). The development of operational thinking in primary school children: An examination of some aspects of Piaget’s theory among the ITESO children of UGANDA. New York: Teachers College Press.
Peterson, R. F., & Treagust, D. F. (1989). Grade-12 students'''' misconceptions of covalent bonding and structure. Journal of Chemical Education, 66(6), 459-460.
Prieto, T., Blanco, A., & Rodriguez, A. (1989). The ideas of 11 to 14-year-old students about the nature of solution. International Journal of Science Education, 11(4), 165-176.
Renner, J. W., Abraham, M. R., & Birnie, H. H. (1988). The necessity of each phase of the learning cycle in teaching high school physics. Journal of Research in Science Teaching , 25(1), 39-58.
Scharmann, L. C. (1991). Teaching angiosperm reproduction by means of the learning cycle. School Science and Mathematics, 91(3), 100-104.
Selley, N. J. (2000). Students’ spontaneous use of a particulate model for dissolution. Research in science education, 30(4), 389-402.
Shepherd, D. L., & Renner, J. W. (1982). Student understandings and misunderstandings of states of matter and density changes. School Science and Mathematics, 82(8), 650-65.
Stavridou, H., & Solomonidou, C. (1989). Physical phenomena-chemical phenomena: do pupils make the distinction? International Journal of Science Education, 11(1), 83-92.
Stepans, J., Dyche, C., & Beswenger, W. (1988). The effect of two instructional models in bring about a conceptual change in the understanding of science concepts by pros prective elementary teachers. Science Education, 72(2), 185-195.
Stavy, R. (1991). Using analogy to overcome misconceptions about conservation of matter. Journal of Research in Science Teaching, 28(4), 305-313.
Tan, K. C. D., Goh, N. K., Chia, L. A., & Treagust, D. F. (2002). Development and application of a two-tier multiple choice diagnostic instrument to assess high school student’s understanding of inorganic chemistry qualitative analysis. Journal of Research in Science Teaching, 39(4), 283-301.
Tsai, C. C., & Chou, C. (2002). Diagnosing students’ alternative conceptions in science. Journal of Computer Assisted Learning, 18, 157-165.
Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10(2), 159-169.
Treagust, D. F., & Smith, C. L. (1989). Secondary students’ understanding of gravity and the motion of planets. School science and Mathematics, 89, 380-391.
Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. In D. L. Gabel (Ed), Handbook of Research on Science Teaching and Learning(177-210). New York: Macmillan Publishing Company.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 黃幸美(1993)。 問題解決的思考歷程。教育研究,34,50-60。
2. 黃幸美(1993)。 類比推理思考及其在教學上的應用,教育研究資訊,3(3),128-142。
3. 柯華葳(1993)。 問題解決教學模式之建立-以國小環境教育為例。國立中正大學學報,4(1)。頁1-32。
4. 李海燕(2000)。知識經濟時代教育觀念的更新。國教天地,141,53—61。
5. 王春展(1997)。 專家與生手間問題解決能力的差異及其在教學上的啟示。教育研究資訊,5(2)。P.80-92。
6. 蔡錫濤(1995)。 國中生活科技內涵及教學策略探討。中學工藝教育月刊,28卷1期,頁10-15。
7. 羅素貞(1996)。 問題表徵與問題解決。屏東師院學報(9),頁149-176。
8. 王春源、郭重吉和黃曼麗(民81):物質變化相關概念診斷測驗工具之發展。科學教育,頁241-264。
9. 杜明進(民82):中日國小自然科學「溶解」相關教材之比較。新竹師院學報,7,349-381。
10. 杜明進(民85):日本國小自然科「水溶液的性質」相關教材之研究。新竹師院學報,9,55-82。
11. 林曉雯(民89):建構主義教學策略--學習環的基本理念及國小自然科學教學設計舉隅。屏師科學教育,11,43-51。
12. 張新仁(民82):奧斯貝的學習理論與教學應用。教育研究雙月刊,32,31-35。
13. 盛承堯(民82):國小自然科學溶液概念及迷思概念之探討。花師數理教育學報,2,1-44。
14. 許健將、郭重吉、李成康(民81):利用二段式測驗探查高三學生有關共價鍵及分子結構之迷思概念。科學教育(彰師),3,175-197。
15. 許榮富(民79):科學概念發展與診斷教學研究合作計畫芻議。科學發展月刊,18(2),150-157。
 
系統版面圖檔 系統版面圖檔