(3.230.143.40) 您好!臺灣時間:2021/04/23 16:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李星黎
研究生(外文):Shing-Li Lee
論文名稱:美洲蟑螂運動中觸角的擺動模式之研究
論文名稱(外文):Studies on the antennal movement pattern of the cockroach during locomotion
指導教授:林金盾林金盾引用關係
指導教授(外文):Jin-Tun Lin
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:生物研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:56
中文關鍵詞:美洲蟑螂觸角關節影像分析
外文關鍵詞:Periplaneta americanaantennajointimage analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:710
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
美洲蟑螂是夜行性的昆蟲,在夜間活動而光線弱甚至無光時,視覺難以發揮作用,必須靠其他感覺,例如利用觸角的擺動來偵測身體周遭環境狀況。本論文探討的重點是蟑螂觸角在個體不同活動狀態下的擺動方向、角度及其調控系統的結構。
利用三方向同時錄影與電腦影像分析的方法,配合自行設計可同步偵測並量化個體運動與觸角擺動的實驗裝置,記錄觸角三度空間的擺動方向與速度並探討其與個體運動的關係。結果顯示蟑螂在靜止時,觸角擺動的幅度非常大,隨著運動速度的增加,擺動幅度逐漸減小。在快速運動(大於300mm/sec)的狀況下,觸角幾乎沒有垂直方向的擺動。蟑螂在靜止時垂直擺動高度比運動時高,隨著運動速度的增加,擺動的高度也逐漸下降,在快速運動狀態下,觸角擺動的高度接近水平。此外,快速運動下觸角也無水平方向的擺動,觸角水平擺動位置在左右40-50度之間,兩觸角保持約90-100度的夾角。由同步記錄數據分析,發現觸角上下垂直擺動主要受梗節與柄節間的關節(SP關節)之活動支配,而左右水平擺動主要受柄節與頭部間的關節(HS關節)活動支配。從形態上探究關節構造,發現SP關節因為結構限制只能垂直活動,而HS關節構造則可三方向活動(上、左下、右下),但在行為表現上主要只負責觸角水平擺動。

The nocturnal insects, that live in the environments with poor light at night, can’t acquire informations from vision. They usually use other sensory cues for environmental detecting, such as auditory, olfactory, tactile......etc. The cockroach (Periplaneta americana) has a pair of long antennae and usually moves its antennae whether at rest or during locomotion. In this study, the variation of 3-D antennal movement pattern under different locomotion speed is examed and the relationship between antennal position and the antennal joints (head-scape joint and scape-pedicel joint) have been investigated by computer-based image analysis.
In experiment, the cockroach is tethered and mounted on a air-floated styrofoam ball. The antennal movement images and the locomotion of cockroach are synchronously recorded by cameras and a custom-designed experimental device, respectively.
The average vertical position of antenna at rest is higher than that during locomotion. Moreover, the cockroach runs faster, the antennal vertical position is lower. During at high locomotion speed, the height of antenna is almost 0 degree. The average horizontal position of antenna is various among different samples at rest, however it is fixed at 40-50 degree related to body axis during locomotion and independent on locomotion speed. The amplitudes of antennal movement, both vertical and horizontal movement, are very large when the cockroach at rest, and is reduced while locomotion. The higher the locomotion speed, the smaller amplitudes of antennal movement, including vertical and horizontal. After analysing the rotation of head, the movement of scape and pedicel synchronously, we find that the vertical movement of antenna is mainly dependent on the movement of pedicel, and this it is due to the two condyli of the scape-pedicel joint that allows only vertical movement. In contrast, the horizontal movement of antenna is largely dependent on the movement of scape, despite that the scape is attached to the head by a socket-like joint that allows semi-rotatory movement of the scape.

中文摘要…………………………………………………………………i
英文摘要…………………………………………………………………ii
壹、前言…………………………………………………………………1
一、觸角的類別…………………………………………………………1
二、觸角的機械感覺功能………………………………………………2
三、昆蟲行為的研究……………………………………………………2
四、觸角擺動的研究……………………………………………………3
五、三度空間運動的研究方法…………………………………………3
六、觸角擺動與昆蟲行為的研究………………………………………4
七、探討昆蟲行為的意義………………………………………………4
八、本論文所要解決的問題……………………………………………5
貳、材料與方法…………………………………………………………6
一、實驗動物……………………………………………………………6
二、個體運動與觸角擺動的觀察………………………………………6
(一)實驗動物之固定……………………………………………………6
(二)實驗裝置……………………………………………………………6
(三)實驗進行之程序……………………………………………………7
(四)不同實驗狀態下個體運動速度差異之分析………………………8
(五)觸角影像的選取……………………………………………………8
(六)觸角擺動之分析……………………………………………………8
三、觸角相關關節的活動情形之分析…………………………………10
(一)固定實驗動物………………………………………………………10
(二)實驗裝置……………………………………………………………10
(三)實驗進行之程序……………………………………………………10
(四)觸角影像的選取……………………………………………………10
(五)觸角擺動之分析……………………………………………………10
參、結果…………………………………………………………………14
一、不同實驗狀態下個體運動速度的比較……………………………14
二、個體運動與觸角擺動的關係………………………………………14
(一)個體運動速度與觸角擺動位置及幅度的關係……………………14
(二)個體運動速度與觸角擺動角速度的關係…………………………15
(三)個體運動速度與觸角垂直擺動頻率的關係………………………15
(四)個體運動速度與前腳跨步頻率的關係……………………………16
(五)觸角垂直擺動與前腳跨步的關係…………………………………16
三、觸角擺動方向與觸角關節活動的關係……………………………16
肆、討論…………………………………………………………………18
一、實驗裝置……………………………………………………………18
二、觸角擺動與運動狀態………………………………………………20
三、觸角垂直擺動與步伐的協調………………………………………23
四、觸角擺動與觸角的關節、肌肉之關係……………………………23
五、在黑暗與光亮中運動速度差異的可能原因………………………25
六、不同感覺輸入對於觸角擺動模式是否有差異……………………25
七、未來展望……………………………………………………………26
伍、結論…………………………………………………………………27
陸、參考文獻……………………………………………………………28
柒、圖表及說明…………………………………………………………32

Allgäuer C. and Honegger HW. (1993) The antennal motor system of crickets: modulation of muscle contractions by a common inhibitor, DUM neurons, and proctolin. J. Comp. Physiol. A 173:485-494.
Baba Y. (2000) New methods of dye application for staining motor neurons in an insect. J. Neurosci. Methods 98:165-169.
Bartos M. and Honegger HW. (1997) Impact of motor activity and antennal mechanosensory input on the intensity of proctolin-like immunoreactivity in antennal motoneurons of crickets (Gryllus bimaculatus). J Comp. Physiol. A 181:59-70.
Bauer CK. and Gewecke M. (1991) Motoneuronal control of antennal muscles in Locust migratoria. J. Insect Physiol. 37(8):551-562.
Beer RD., Ritzmann RE. and McKenna T. (1993) Biological neural networks in invertebrate neuroethology and robotics. Academic Press Inc. San Diego.
Böhm H., Schildberger K. and Huber F. (1991) Visual and acoustic course control in the cricket Gryllus bimaculatus. J. Exp. Biol. 159:235-248.
Burrows M. (1996) The neurobiology of an insect brain. Oxford University Press Inc., New York.
Camhi JM. and Johnson EN. (1999) High-frequency steering maneuvers mediated by tactile cues: antennal wall-following in the cockroach. J. Exp. Biol. 202:631-643.
Comer CM., Mara E., Murphy KA., Getman M. and Mungy MC. (1994) Multisensory control of escape in the cockroach Periplaneta americana. II. Patterns of touch-evoked behavior. J. Comp. Physiol. A 174:13-26.
Comer CM., Park L. and Halvorsen MB. (2003) The antennal system and cockroach evasive behavior. II. Stimulus identification and locolization are separable antennal functions. J. Comp. Physiol. A 189:97-103.
Delcomyn F. (1971) The locomotion of the cockroach Periplaneta americana. J. Exp. Biol. 54:443-452.
Delcomyn F. (1973) Motor activity during walking in the cockroach Periplaneta americana. II. Tethered walking. J. Exp. Biol. 59:643-654.
Doherty JA. and Pires A. (1987) A new microcomputer-based method for measuring walking phonotaxis in field crickets (Gryllidae). J. Exp. Biol. 130:425-432.
Doi N. and Toh Y. (1992) Modification of cockroach behavior to environmental humidity change by dehydration (Dictyoptera: Blattedae). J. Insect Behav. 5:479-490.
Dürr V., König Y. and Kittmann R. (2001) The antennal motor system of the stick insect Carausius morosus: antatomy and antennal movement pattern during walking. J. Comp. Physiol. A 187:131-144.
Ehmer B. and Gronenberg W. (1997a) Antennal muscles and fast antennal movements in ants. J. Comp. Physiol. B 167:287-296.
Ehmer B. and Gronenberg W. (1997b) Proprioceptors and fast antennal reflexes in the ant Odontomachus (Formicidae, Ponerinae). Cell Tissue Res. 290:153-165.
Elisabeth HD. (1992) Functional characterization of antennal contact chemoreceptors in the cockroach, Periplaneta americana: An electrophysiological investigation. J. Insect Physiol. 38(10):813-822.
Ferry LA. and Lauder GV. (1996) Heteroceral tail function in leopard sharks: A Three dimensional kinematic analysis of two models. J. Exp. Biol. 199: 2253—2268.
Flores GB. and Lazzari CR. (1996) The role of the antenna in Triatoma infestans: Orientation toward thermal sources. J. Insect Physiol. 42(5):433-440.
Friedberg SH., Insel AJ. and Spence LE. (1992) Linear algebra. 2nd ed. Prentice Hall Inc., New Jersey.
Full RJ. and Tu MS. (1991) Mechanics of a rapid running insect: two-, four- and six-legged locomotion. J. Exp. Biol. 156:215-231.
Gras H. and Höner M. (1992) Wind-evoked escape running of the cricket Gryllus bimaculatus. I. Behavioural analysis. J. Exp. Biol. 171:215-245.
Guthrie DM. and Tindall AR. (1968) The biology of the cockroach. St. Martin's Press, New York.
Hansson B.S. (1999) Insect olfaction. Springer, Berlin Heidelberg New York.
Hedrick TL., Tobalske BW. and Biewener AA. (2002) Estimates of circulation and gait change based on a three-dimensional kinematic analysis of flight in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Strephtopelia risoria). J. Exp. Biol. 205:1389-1409.
Homberg U., Christensen TA. and Hildebrand JG.(1989) Structure and function of the deutocerebrum in insect. Ann. Rev. Entomol. 34:477-501.
Honegger HW., Allgäuer C., Klepsch U. and Welker J. (1990) Morphology of antennal motoneurons in the brains of two crickets, Gryllus bimaculatus and Gryllus campestris. J. Comp. Neurol. 291:256-268.
Horseman BG., Gebhardt MJ. and Honegger HW. (1997) Involvement of the suboesophageal and thoracic gangliain the control of antennal movements in crickets. J. Comp. Physiol. 181:195-204.
Kammerer R., Bauer W. and Honegger HW., (1987) On-line analysis of rapid motion with a microcomputer. J. Neurosci. Methods 19:89-94.
Kien J. and Altman JS. (1984) Descending interneurons from the brain and suboesophageal ganglia and their role in the control of locust behavior. J. Insect Physiol. 30(1):59-72.
Kloppenburg P. (1995) Anatomy of the antennal motoneurons in the brain of the honeybee (Apis mellifera). J. Comp. Neurol. 363:333-343.
Kloppenburg P., Camazine SM., Sun XJ., Randolph P. and Hildebrand JG. (1997) Organization of the antennal motor system in the sphinx moth Manduca sexta. Cell Tissue Res. 287:425-433.
Kozacik JJ. (1981) Stepping patterns in the cockroach, Periplaneta americana. J. Exp. Biol. 90:357-360.
Kram R., Wong B. and Full RJ. (1997) Three-dimensional kinematics and limb kinetic energy of running cockroaches. J. Exp. Biol. 200:1919-1929.
Kramer E. (1976) The orientatin of walking honeybees in odour fields with small concentration gradients. Physiol. Entomol. 1:27-37.
Lewis PE. and Ward JP. (1989) Vector analysis for engineers and scientists. Addision-Wesley Publishers Ltd., New York.
Niehaus M. (1981) Flight and flight control by the antennae in the small tortoiseshell (Aglais urticae L., Lepidoptera) II. Flight mill and free flight experiments. J. Comp. Physiol. 145:257-264.
Okada J. and Toh Y. (1998) Shade responese in the escape behavior of the cockroach, Periplaneta americana. Zoo. Sci. 15:831-835.
Okada J. and Toh Y. (2000) The role of antennal hair plates in object-guided tactile orientation of the cockroach(Periplaneta americana). J. Comp. Physiol. A 186:849-857.
Okada J. and Toh Y. (2001) Peripheral representation of antennal orientation by the scapal hair plate of the cockroach Periplaneta americana. J. Exp. Biol. 204:4301-4309.
Pelletier Y. and McLeod C. (1994) Obstacle perception by insect antennae during terrestrial locomotion. Physiol. Entomol. 19:360-362.
Ramamurti R., Sandberg WC., Löhner R., Walker JA. and Westneat MW. (2002) Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation. J. Exp. Biol. 205: 2997—3008.
Romoser WS. and Stoffolano JG. (1994) The science of entomology. Wm. C. Brown Publishers, Oxford.
Rospars JP. (1988) Structure and development of the insect antennodeutocerebral system. Int. J. Insect Morphol. Embryol. 17(3):243-294.
Saager F. and Gewecke M. (1989) Antennal reflexes in the desert locust Schistocerca gregaria. J. Exp. Biol. 147:519-532.
Sandeman DC. and Wilkens LA. (1983) Motor control of movements of the antennal flagellum in the australian crayfish, Euastacus armatus. J. Exp. Biol. 105:253-273.
Schneider D. (1964) Insect Antenna. Annu. Rev. Entomol. 8:103-122.
Shyy W., Berg M. and Ljungqvist D. (1999) Flapping and flexible wings for biological and micro air vehicles. Prog. Aero. Sci. 35:455-505.
Snodgrass RE. (1976) Anatomy of the honey bee. Comstock publishing associates. London.
Suzuki H. (1975) Antennal movements induced by odour and central projection of the antennal neurons in the honey-bee. J. Insect Physiol. 21:831-847.
Van der Berg C. (1994) A quantitative, three-dimensional method for analyzing rotational movement from single-view movies. J. Exp. Biol. 191:283-290.
Watson JT., Ritzmann RE., Zill SN. and Pollack AJ. (2002) Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics. J. Comp. Physiol. A 188:39-53.
Weber T., Thorson J. and Huber F. (1981) Auditory behavior of the cricket. I. Dynamics of compensated walking and discrimination paradigms on the Kramer treadmill. J. Comp. Physiol. 141:215-232.
Webb B. (1996) A cricket robot. Sci. Am. 275(6):94-99.
Wendler G., Dambach M., Schmitz B. and Scharstein H. (1980) Analysis of the acoustic orientation behavior in crickets (Gryllus campestris L.). Naturwissenschaften 67:99-101.
Ye S. and Comer CM. (1996) Correspondence of escape-turing behavior with activity of descending mechanosensory interneurons in the cockroach, Periplaneta americana. J. Neurosci. 16(18):5844-5853.
Ye S., Dowd JP. and Comer CM. (1995) A motion tracking system for simultaneous recording of rapid locomotion and neural activity from an insect. J. Neurosci. Methods 60:199-210.
Ye S., Leung V., Khan A., Baba Y. and Comer CM. (2003) The antennal system and cockroach evasive behavior. I. Roles for visual and mechanosensory cues in the response. J. Comp. Physiol. A 189:89-96.
Young HD. University Physics, 8th edn. Addison-Wesley publishing company Inc. New York. 1992. (Chapter 9, Rotational motion, pp.232-255)
Zill SN. and Seyfarth E. (1996) Exoskeletal sensors for walking. Sci. Am. 275 (1): 86-90.
李星黎、李琦玫、林金盾. (1996) 不同感覺輸入對蟑螂逃亡行為的影響. 師大生物學報 31(1):55-63.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔