跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:45cf:c86b:e393:b18b) 您好!臺灣時間:2025/01/13 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃文彬
論文名稱:五維正交群之不變子環
論文名稱(外文):POLYNOMIAL INVARIANTS OF FIVE-DIMENSIONAL ORTHOGONAL GROUPS
指導教授:洪有情洪有情引用關係
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:18
中文關鍵詞:正交群不變環不變子環
外文關鍵詞:orthogonalinvariant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
設 Q 是佈於有限体F上的非退化二次型式,其中F的特徵數為奇質數。令O為對應於Q的正交群。本篇文章我們將找出在五維空間下,被O固定所形成的不變子環的生成元,並證明此一不變子環是唯一分解環.
Let $Q$ be a nondegenerate quadratic form over the finite field $\mathbb{F}_{q}$
of odd prime power order $q$ with char$\mathbb{F}_{q}\neq 2$
and Let $O_{n}(\mathbb{F}_{q})$ be the associated orthogonal group.
Let $O_{n}(\mathbb{F}_{q})$ act linearly on the polynomial ring
$\mathbb{F}_{q}[x_{1},\ldots,x_{n}].$ In this thesis we find the invariant subring
$\mathbb{F}_{q}[x_{1},x_{2},x_{3},x_{4},x_{5}]^{O_{5}(\mathbb{F}_{q})}$
with explicit generators. We also prove that this subring is a UFD.
Chapter 1 Introdution
Chapter 2 Construction of the Minimal Polynomial of over F
Chapter 3 Construction of the Invariant Ring
1. M.F. Atyiah and I.G. Macdonald,
Introduction to Commutative Algebra.
Addison-Wesley Redaing, Mass., 1969.
2. D. Carlisle and P. Kropholler,
Rational invariants of certain orthogonal and unitary groups
Bull. London Math. Soc. 24 (1992), 57-60.
3. L. Chiang and Y. C. Hung,
The invariants of orthogonal group actions.
Bull. Astralian Math. Soc. 48 (1993), 313-319.
4. H. Chu,
Polynomial invariants of four-dimensional orthogonal groups
Communication in Algebra 29 (2001), 1153-1164.
5. H. Chu,
Orthogonal group actions on rational function fields.
Bull. Inst. Math. Acad. Sinica. 16 (1988), 115-122.
6. S. D. Cohen,
Rational functions invariant under an orthogonal group.
Bull. London Math. Soc. 22 (1990), 217-221.
7. D. Eisenbud,
Commutative algebra with a view toward algebraic geometry.
Graduate Texts in Mathematics 150, Springer-Verlag, 1994.
8. N. Jacobson,
Basic Algebra Vol.I.
W. H. Freeman and Comp, 1984.
9. I. Kaplansky,
Communciative Ring.
The University of Chicago Press:Chicago, 1974.
10. G. Kemper and G. Malle,
The finite irrducible linear groups with polynomial ring of invariants.
Transformation Groups, Vol.2, No.1, 1997, 57-89.
11. B.Leclerc,
On identities satisfied by minors of a matrix.}
Adv. in Math. 100(1993), 101-132.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top