一、中文部分
王順正與林正常。(1992)。臨界負荷、肌電圖疲勞閾值與無氧閾值的關係研究。體育學報,14,207-226。王順正與林正常。(1994)。跑步臨界速度與無氧閾值的關係研究。中華民國大專院校83年度體育學術研討會專刊,411-426。
王順正、王鶴森與林正常。(1995)。漸增強度運動測驗之臨界負荷與無氧閾值的關係研究。體育學報,19,145-156。王順正。(1998)。長跑選手臨界速度跑的生理反應研究。國立臺灣師範大學體育學系博士論文。國立臺灣師範大學體育學系,臺北市,臺灣。
王順正、林正常、莊泰源與郭堉圻。(1998)。實驗室與田徑場跑步速度耐力模式測驗結果的比較。體育學報,26,289-296。王順正、林玉瓊、吳忠芳與林正常。(2002)。速度耐力模式評量無氧跑步能力與最大瞬間速度之研究。體育學報,33,1-10。李長生。(1997)。短距離捷泳與長距離捷泳導出之臨界速度的比較研究。國立臺灣師範大學體育學系碩士論文。國立臺灣師範大學體育學系,臺北市,臺灣。吳慧君。(1999)。運動能力的生理學評定。台北市:師大書苑。
吳忠芳、王順正、莊泰源、林玉瓊與林正常。(2000)。長跑選手無氧跑步能力判定法之比較研究。體育學報,28,269-275。呂香珠。(1991)。無氧動力測驗的新詮釋及其應用時機。中華體育,16,61-69。林正常。(1993)。運動科學與訓練─運動教練手冊。台北縣:銀禾文化。
林正常。(1996)。運動生理學實驗指引。台北市:師大書苑。
戴堯種。(1995)。女子游泳選手之臨界速度對捷泳成績的預測研究。國立臺灣師範大學體育學系碩士論文。國立臺灣師範大學體育學系,臺北市,臺灣。龔憶琳。(1990)。無氧閾值在運動訓練上的應用。中華體育,12,107-117。二、英文部分
Bangsbo, J., Michalsik, L., & Petersen, A. (1993). Accumulated O2 deficit during intense exercise and muscle characteristics of elite athletes. International Journal of Sports Medicine, 14(4), 207-213.
Beckenholdt, S.E., & Mayhew, J.L. (1983). Specificity among anaerobic power tests in male athletes. Journal of Sports Medicine and physical fitness, 23(3), 326-332.
Billat, V.L., Slawinksi, J., Bocquet, V., Chassaing, P., Demarle, A., & Koralsztein, J.P. (2001). Very short (15s-15s) interval-training around the critical velocity allows middle-aged runners to maintain VO2max for 14 minutes. International Journal of Sports Medicine, 22(3), 201-208.
Blondel, N., Berthoin, S., Billat, V., & Lensel, G. (2001). Relationship between run times to exhaustion at 90, 100, 120, and 140% of vVO2max and velocity expressed relatively to critical velocity and maximal velocity. International Journal of Sports Medicine, 22(1), 27-33.
Bulbulian, R., Wilcox, A.R., & Darabos, B.L. (1986). Anaerobic contribution to distance running performance of trained cross-country athletes. Medicine and Science in Sports and Exercise, 18(1), 107-113.
Bulbulian, R., Jeong, J.W., & Murphy, M. (1996). Comparison of anaerobic components of the Wingate and Critical Power tests in males and females. Medicine and Science in Sports and Exercise, 28(10), 1336-1341.
Cellini, M., Vitiello, P., Nagliati, A., Ziglio, P.G., Martinelli, S., Ballarin, E., & Conconi, F. (1986). Noninvasive determination of the anaerobic threshold in swimming. International Journal of Sports Medicine, 7(6), 347-351.
Conconi, F., Ferrari, M., Ziglio, P.G., Droghetti, P., & Codeca, L. (1982). Determination of the anaerobic threshold by a noninvasive field test in runners. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 52(4), 869-873.
deVries, H.A., & Moritani, T. (1980). A simple, direct method for estimation of aerobic power and anaerobic threshold. Abstract. Medicine and Science in Sports and Exercise, 12(2), 86.
Gaesser, G.A., Carnevale, T.J., Garfinkel, A., Walter, D.O., & Womack, C.J. (1995). Estimation of critical power with nonlinear and linear models. Medicine and Science in Sports and Exercise, 27(10), 1430-1438.
Green, S., Bishop, D., & Jenkins, D. (1995). Effect of end-point cadence on the maximal work-time relationship. European Journal of Applied Physiology and Occupational Physiology, 71(6), 559-561.
Hermansen, L., & Medbo, J.I. (1984). The relative significance of aerobic and anaerobic processes during maximal exercise of short duration. Physiological Chemistry of Training and Detraining, New York, Karger, 56-67.
Hill, D.W., & Smith, J.C. (1993). A comparsion of methods of estimating anaerobic work capacity. Ergonomics, 36(12), 1495-1500.
Hill, D.W., & Smith, J.C. (1994). A method to ensure the accuracy of estimates of anaerobic capacity derived using the critical power concept. Journal of Sports Medicine and Physical Fitness, 34(1), 23-37.
Hill, D.W., & Ferguson, C.S. (1999). A physiological description of critical velocity. European Journal of Applied Physiology and Occupational Physiology, 79(3), 290-293.
Hopkins, W.G., Edmond, I.M., Hamilton, B.H., Macfarlane, D.J., & Ross, B.H. (1989). Relation between power and endurance for treadmill running of short duration. Ergonomics, 32(12), 1565-1571.
Housh, D.J., Housh, T.J., & Bauge, S.M. (1990). A methodological consideration for the determination of critical power and anaerobic work capacity. Research Quarterly for Exercise and Sport, 61(4), 406-409.
Housh, T.J., Devries, H.A., Housh, D.J., Tichy, M.W., Smyth, K.D., & Tichy, A.M. (1991). The relationship between critical power and the onset of blood lactate accumulation. Journal of Sports Medicine and Physical Fitness, 31(1), 31-36.
Housh, T.J., Johnson, G.O., McDowell, S.L., Housh, D.J., & Pepper, M.L. (1992). The relationship between anaerobic running capacity and peak plama lactate. Journal of Sports Medicine and Physical Fitness, 32(2), 117-122.
Hughson, R.L., Orok, C.J., & Staudt, L.E. (1984). A high velocity treadmill running test to assess endurance running potential. International Journal of Sports Medicine, 5(1), 23-25.
Jenkins, D.G., & Quigley, B.M. (1991). Y-intercept of the critical power function as a measure of anaerobic work capacity. Ergonomics, 34(1), 13-22.
Jenkins, D.G., & Quigley, B.M. (1992). Endurance training enhances critical power. Medicine and Science in Sports and Exercise, 24(11), 1283-1289.
Kaczkowski, W., Montgomery, D.L., Taylor, A.W., & Klissouras, V. (1982). Relationship between muscle fiber composition and maximal anaerobic power and capacity. Journal of Sports Medicine and Physical Fitness, 22(4), 407-413.
Kanaley, J.A., & Boileau, R.A. (1988). The onset of the anaerobic threshold at three stages of physical maturity. Journal of Sports Medicine and Physical Fitness, 28(4), 367-374.
Kranenburg, K.J., & Smith, D.J. (1996). Comparison of critical speed determined from track running and treadmill tests in elite runners. Medicine and Science in Sports and Exercise, 28(5), 614-618.
Lane, C.J., Steward, R.P., & Hill, D.W. (1994). Estimation of anaerobic capacity in swimmers using the critical power concept. Abstract. Medicine and Science in Sports and Exercise, 26,(5 Supplement), s44.
McConnell, T.R. (1988). Practical considerations in the testing of VO2max in runners. Sports Medicine, 5(1), 57-68.
McLellan, T.M., & Cheung, K.S. (1992). A comparative evaluation of the individual anaerobic threshold and the critical power. Medicine and Science in Sports and Exercise, 24(5), 543-550.
Medbo, J.I., Mohn, A.C., Tabata, I., Bahr, R., Vaage, O., & Sejersted, O.M. (1988). Anaerobic capacity determined by maximal accumulated O2 deficit. Journal of Applied Physiology, 64, 50-60.
Monod, H., & Scherrer, J. (1965). The work capacity of a synergic muscular group. Ergonomics, 8, 329-338.
Moritani, T., Muro, M., Nagata, A., & DeVries, H.A. (1981). Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics, 24(5), 339-350.
Morton, R.H. (1990). Modelling human power and endurance. Journal of Mathematical Biology, 28(1), 49-64.
Morton, R.H., Fitz-Clarke, J.R., & Banister, E.W. (1990). Modeling human performance in running. Journal of Applied Physiology, 69(3), 1171-1177.
Morton, R.H. (1996). A 3-parameter critical power model. Ergonomics, 39(4), 611-619.
Morton, R.H., & Hodgson, D.J. (1996). The relationship between power output and endurance: a brief review. European Journal of Applied Physiology and Occupational Physiology, 73(6), 491-502.
Nebelsick-Gullett, L.J., Housh, T.J., Johnson, G.O., & Bauge, S.M. (1988). A comparison between methods of measuring anaerobic work capacity. Ergonomics, 31(10), 1413-1419.
Smith, J.C., Dangelmaier, B.S., & Hill, D.W. (1999). Critical power is related to cycling time trial performance. International Journal of Sports Medicine, 20(6), 374-378.
Toussaint, H.M., Wakayoshi, K., Hollander, A.P., & Ogita, F. (1998). Simulated front crawl swimming performance related to critical speed and critical power. Medicine and Science in Sports and Exercise, 30(1), 144-151.
Vandewalle, H., Kapitaniak, B., Gruen, S., Raveneau, S., & Monod, H. (1989). Comparison between a 30-s all-out test and a time-work test on a cycle ergometer. European Journal of Applied Physiology and Occupational Physiology, 58(4), 375-381.
Vandewalle, H., Vautier, J.F., Kachouri, M., Lechevalier, J.M., & Monod, H. (1997). Work-exhaustion time relationships and the critical power concept: a critical review. Journal of Sports Medicine and Physical Fitness, 37(2), 89-102.
Wakayoshi, K., Yoshida, T., Udo, M., Harada, T., Moritani, T., Mutoh, Y., & Miyashita, M. (1993). Does critical swimming velocity represent exercise intensity at maximal lactate steady state? European Journal of Applied Physiology and Occupational Physiology, 66(1), 90-95.
Wasserman, K., Van Kessel, A.L., & Burton, G.G. (1967). Interaction of physiological mechanisms during exercise. Journal of Applied Physiology, 22(1), 71-85.
Wasserman, K., Whipp, B.J., Koyal, S.N., & Beaver, W.L. (1973). Anaerobic threshold and respiratory gas exchange during exercise. Journal of Applied physiology, 35(2), 236-243.
Wasserman, K., Whipp, B.J., Koyal, S.N., & Cleary, M.G. (1976). Effect of carotid body resection on ventilatory and acid-base control during exercise. Journal of Applied physiology, 39(3), 354-358.