(3.238.240.197) 您好!臺灣時間:2021/04/12 23:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭景豪
研究生(外文):Jing-Hao Gao
論文名稱:甲魚(Pelodiscussinensis)飼料的最適蛋白能量比暨飼料能量源(熟化澱粉與油脂)之探討
論文名稱(外文):Evaluation on the Protein Energy Ratio and the Dietary Energy Sources (α-starch and Lipid) for the Juvenile Soft-shell Turtle (Pelodiscus sinensis)
指導教授:黃沂訓黃沂訓引用關係
指導教授(外文):Yii-Shing Hung
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:82
中文關鍵詞:甲魚蛋白能量比能量
外文關鍵詞:soft-shell turtleprotein energy ratioenergy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:587
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討甲魚飼料之最適蛋白能量比及油脂暨熟化澱粉與油脂作為飼料能量源之影響。實驗一以55%白魚粉、30%黃豆粉、15%肉骨粉為蛋白源,配製十二組飼料蛋白質含量在35%, 40%, 45%。以適當比例玉米油(0%、4%、8%)和熟化澱粉(0%、9%、18%)調配成各有不同比例之蛋白質、脂質及碳水化合物之飼料,探討蛋白能量比對甲魚成長之影響。投餵平均體重5.84 ±0.23 g的甲魚。經56天的成長實驗,活存率以蛋白質源60% 脂質4%碳水化合物0%(P60L4C0)飼料顯著性低於其他各組。同時結果也顯示飼料中熟化澱粉含量越高對甲魚之成長各項指標如增重率,比成長率以及飼料效率上均隨之提高。反之,當飼料脂質添加量超過8﹪時成長會受到影響。因此本研究推論甲魚飼料中之能量可以在35﹪CP時調至373.5 kcal/100g,而其最適蛋白能量比為104.5 mg/kcal左右。在飼料中添加18% 熟化澱粉 (總碳水化合物含量31.0%)後,可使含35﹪CP之飼料與含45﹪CP之飼料對甲魚成長有相同之效果,可有效節約飼料中10﹪之蛋白質含量。
實驗二則以30%白魚粉、40%黃豆粉、30%肉骨粉為蛋白源,配製蛋白質含量在25%、30%、35%。再以0%、9%、18%、27%、36%、45%的熟化澱粉添加至各不同蛋白量之組別共計十五組,以探討甲魚對熟化澱粉作為能量源之利用能力。甲魚實驗初體重為9.82±0.43 g。在進行56天飼料實驗後顯示,粗蛋白含量不宜低於35%。增重率當添加熟化澱粉超過9%之後,有隨熟化澱粉添加量增加而下降的趨勢。在飼料效率方面,在CP25%組熟化澱粉添加量超過27%之後,會有下降的現象,而在CP30%與CP35%組則在9%熟化澱粉添加量有較佳的飼料效率。在體組成分析中,在蛋白質方面,未添加熟化澱粉組比其他組別有含量較低的現象,並具有顯著差異。在體組成之脂質方面,以未添加組及36%組為最低,而18%、27%、45%為最高,彼此間無顯著差異。實驗結果顯示,含35%粗蛋白之飼料添加9%熟化澱粉(無氮抽出物,NFE含量為33.3%),能量為342 kcal/100g對甲魚之成長各項指標如增重率,成長率以及飼料效益均有最好表現。
綜合以上兩個實驗推論:飼料粗蛋白不能低於35%,總碳水化合物量不超過33.3%,脂質總含量不超過14%; 能量在342.1 ~ 373.5 kcal/100g 而P/E比在 105 mg/kcal 之飼料對甲魚成長最佳。

The objective of this study was conducted to investigate the most suitable protein/energy (P/E) ratio in diets for soft-shell turtle (Pelodiscus sinensis) , and to evaluate the suitable level of lipid and α-starch as dietary energy sources.
A combination of white fish meal, soybean meal, and meat bone meal (55:30:15) was used as the major protein source for experiment I. Twelve diets was formulated to contain three protein levels (35%, 40% and 45%). The energy contents of each group of diets were adjusted by gradient proportion of corn oil (0%、4%、8%) and α-starch (0%、9%、18%). Diets were fed to triplicate groups of 10 soft shell turtles (initial weight: 5.84±0.23g) for 56 days. A diet containing 60% protein source, 4% lipid ,and 0%α-starch (P60L4C0) had a significantly lowest survival rates (77.3%) among different diets. Weight gain, specific growth ratio and feed efficiency increased with increasing level of dietary carbohydrate. About 10% of crude protein could be saved by 18% of -starch (31% of dietary NFE content) included in 35%CP diet with equal growth performance as that for 45%CP diet. Turtle received diets containing a dietary lipid level over 8% exhibited retarded growth. It was concluded that the total dietary energy of a formulated feed can be reduced to 373.5 kcal/100g with a crude protein level of 35%, which had a P/E ratio of 104.5 mg/kcal.
Of the second experiment, a combination of white fish meal, soybean meal, and meat bone meal (30:40:30) was used as the major protein source. Fifteen diets was formulated to contain three protein levels (25%, 30% and 35%). The energy contents of each group of diets were adjusted by gradient proportion of α-starch(0%、9%、18%、27%、36%、45%). Experiment II was prepared to investigate the utilization of energy source byα-starch in soft-shell turtle. Diets were fed to triplicate groups each having 6 soft shell turtles (initial weight: 9.82±0.43g) for 56 days. After 56 days of feeding, The specific growth ratio (SGR) of soft-shell turtle increased with increasing dietary protein level. Weight gain of soft-shell turtle decreased with increasing starch level when the level exceeded 9%. The feed efficiency of soft-shell turtle decreased with increasing starch level when starch level lower than 27% for the 25%CP group. And the higher value was found on the starch level at 9% and on the group fed 30%CP and 35%CP. Soft-shell turtle fed a 0% starch diet was exhibited a highest whole body protein content. Soft-shell turtle fed a 0% starch diet was exhibited a lowest whole body lipid content, and fed 27% starch diet was exhibited a highest body lipid content. These results suggest that a diet containing 35% dietary protein level, 9% of dietary starch (33% of dietary NFE content) and energy as 342 kcal/100g will give soft-shell turtle best performance on all respect of growth performance.
According to those two experiments, diets containing 35% dietary protein level at least , 33% of dietary NFE content at most and 14% dietary lipid level at most, energy as 342.1 ~ 373.5 kcal/100g, and P/E ratio about 105mg/kcal, will be the most suitable diet for the soft-shell turtle in growth.

目 錄
摘要(中文)…………………………………………………………. ……i
摘要(英文) ……………………………………………………………...iii
表目錄……………………………………………………………………v
圖目錄…………………………………………………………………...ix
附表目錄…………………………………………………………………x
前言………………………………………………………………………1
文獻整理……………………………………………….. ………3
實驗一: 甲魚飼料之最適蛋白能量比
材料與方法…………………………………………………...13
結果…………………………………………………………...20
討論…………………………………………………………...24
結論…………………………………………………………...27
實驗二: 甲魚對於熟化澱粉之利用能力
材料與方法…………………………………………………...28
結果……………………………………………….. …………30
討論……………………………………………….. …………37
結論……………………………………………….. …………40
總結論………………………………………………………...41
參考文獻……………………………………………………...42

參 考 文 獻
Akand, A. M., Mian, M. I. and Haque, M. M., 1989. Effect of dietary protein level on growth, feed conversion and body composition of Shingi (Heteropneustes fossilis Bloch). Aquaculture, 55: 35-42.
Andersen, N. G. and Alsted, N. S., 1991. Growth and body composition of turbot (Scopthalmus maximus(L.)) in relation to different lipid/protein ratios in the diet. In: Kaushik, S.J., Luquet, P. (Eds.), Fish Nutrion in Practice. INRA, Paris, France, p.p. 479-491.
AOAC ( Official methods of analysis of AOAC international ), 1997. 16th edition, Gaithersburg, Maryland : AOAC International.
Balogun, A. M. and Ologhobo, A. D., 1989. Growth performance and nutrition utilization of fingerling Clarias gariepinus fed raw and cooked soybean diets. Aquaculture, 76: 119-126.
Boothby, R. N. and Avault, J. J. 1971, Food habits, length-weight relationship, and condition factor of the red drum (Sciaenops ocellata) in south-eastern Louisiana. Trans. Am. Fish. Soc.,100, 2:290-295.
Bojard, T. and Medale, F., 1994. Regulation of voluntary feed intake in juvenile rainbow trout fed by hand or by self-feeders with diets containing two different protein/energy ratios. Aquat. Living Resour. 7, 211-215.
Catacutan, M. R. and Coloso, R. M., 1995. Effect of dietary protein to energy ratios on growth, survival, and body composition of juvenile Asian seabass, Lates calcarifer. Aquaculture, 131, 125-133.
Cho, C. Y. and Kaushik, S. J., 1990. Nutritional energetics in fish:protein and energy utilization in rainbow trout. World Rev. Anim. Nutr.,61,132-172
Choo, B. L. and Chou, L. M., 1984. Effect of a sand substrate on the growth and survival of hatchlings of the softshell turtle, Trionyx sinensis Wiegmann. Aquaculture, 40, 325-331.
Chu, B., 1989. The technology of using ground heat for soft-shelled turtle overwintering culture. Proceedings of the International Symposium of Agricultureal Engineering (89-ISAE), 2: 993-994.
Cowey, C. B., Adron, J. W., Walton, M. J., Murray, J., Youngson, A. and Knox, D., 1981. Tissue Distribution, Uptake, and Requirement for alpha -Tocopherol of Rainbow Trout (Salmo gairdneri ) Fed Diets With a Minimal Content of Unsaturated Fatty Acids. J. Nutr., 111: 1556-1564.
Daniels, W. H. and Robinson, E. H., 1986. Protein and energy requirements of juvenile red drum (Sciaenops ocellatus). Aquaculture, 53: 243-252.
Degani, G. and Viola, S., 1987.The protein sparing effect of carbohydrate in the diets of eels (Anguilla anguilla). Aquaculture, 64: 277-282.
Erfanullah, P. and Jafri A. K., 1995.Protein-sparing effect of dietary carbohydrate in diets for fingerling Labeo rohita. Aquaculture, 136:331-339.
Folch, J. Lees, M. and Stanely, C.H.S., 1957. A simple method for the isolation and purification of total lipids form animal tissue. J. Biol. Chem., 226:477-509.
Gallego, M. G., Hidalgo, M. C., Suarez, M. D., Sanz, A. and Higuera, M., 1993. Feeding of eht European eels Anguilla anguilla. II. Influence of dietary lipid level. Comp. Biochem. Physiol., 105A: 171-175.
Hepher, B., Liao, I.C., Cheng, S. H. and Hsieh, C. S., 1983. Food utilization by tilapia. - Effect of diet composition feeding level and temperature on utilization efficiency for maintenance and growth..
Hernandez, M., Takeuchi, T. and Watanabe, T., 1995. Effect of dietary energy sources on the utilization of protein by Colossoma macropomum fingerlings. Fish. Sci., 61(3): 507-511.
Hutchins, C. G., Rawles, S. D., Gatlin III, D. M.,1998. Effects of dietary carbohydrate kind and level on growth, body composition and glycemic response of juvenile sunshine bass (Morone chrysops female x M. saxatilis male). Aquaculture,161,187-199.
Jauncey K., 1982.The effects of varying dietary protein level on the growth, food conversion, protein utilization and body composition of juvenile tilapias (Sarotherodon mossambicus). Aquaculture, 27
Jobling, M. and Wandsvik, M. 1983. Quantitive protein requirement of arctic charr Salvelinus alpinus. J. Fish. Bio., 22, 6:705-712.
Leary, D.F. and Lovell, R.T., 1975. Value of fiber in production type diet for channel catfish. Trans. Am.Fish. Soc., 104:328-332.
Lee, J. and Putnam, L., 1973. The response of rainbow trout to varying protein/energy ratios in a test diet. J. Butr., 103:916-922.
Lovell, R. T., 1978. Dietary phosphorus requirement of channel catfish (Ictalurus punctatus). Trans. Am. Fish. Soc.,14:154-158.
Mahmoud, I.Y. and Klicka, J., 1979. Feeding, drinking and excretion. In: Harless, M. and Morlock, H., (Editor) , Turtles Perspectives and Research. John Wiley and Sons, New York, Chichester, Brisbane,
Mazid, M.A., Tanaka, Y., Katayama, T., Rahman, M. A. Simposon, K.L. and Chichester, C. O., 1979. Growth response of Tilapia zillii fingerling fed isocaloric diets with variable protein levels. Aquaculture, 18:115-122.
McGoogan, B. B. and Gatlin III, D. M., 1999. Dietary manipulations affecting growth and nitrogenous waste production of red drum, Sciaenops ocellatus I. Effects of dietary protein and energy levels. Aquaculture, 178:333-348.
Medale, F., Blanc, D. and Kaushik, S. J., 1991. Studies on the nutrition of Siberian Sturgeon, Acipenser baeri. II. Utilization of diet non-protein energy by sturgeon. Aquaculture, 93:143-154.
Michoels, M. A. M. and Henken, A. M., 1985. Growth rate, feed utilization and energy metabolism of the African catfish, Clarias gariepinus (Burchell, 1822), as affected by dietary protein and energy content. Dep. Fish Cult. and Inland Fish., Agric. Univ., P.O. Box 338, Wageningen, Netherlands Aquaculture,44,4:271-284
Mitsukuri, K., 1905. The cultivation of marine and fresh water animals in Japan. The snapping turtle, or softshell tortoise, Suppon. Bull. U.S. Bur.Fish., 24: 260-266.
Nematipour, G. R., Brown, M. L. and Gatlin III, D. M., 1992. Effects of dieary energy:protein ratio on growth characteristics and body composition of hubrid striped bass, Moron chrysops ♀ × M. saxati. Aquaculture, 107:4, 359-368
NRC,(National Research Council), 1993. Nutrient requirements of fishes. Natl. Acad. press, Washington, DC. p102
Nuangsaeng, B. and Boonyaratapalin, M. 2001. Protein requirement of juvenile soft-shelled turtle Trionyx sinensis Wiegmann. Aquaculture Research, 32(Suppl.1): 106-111
Ojaveer, H., Morris, P. C., Davies, S. J. and Russell, P. 1996. The response of thick-lipped grey mullet, Chelon labrosus (Risso), to diets of varied protein-to-energy ratio. Aquacult. Res, 27: 603-612.
Parazo, M. M., 1990. Effect of dietary protein and energy level on growth, protein utilization and carcass composition of rabbitfish, Siganus guttatus, Aquaculture, 86:41-49.
Petersen, R.G.,1985. Design and Analysis of Experiments. Marcel Dekker, New York, USA.
Reinitz, G. and Hitzel, F., 1980. Formulation of practical diets for rainbow trout based on desired performance and body composition. Aquaculture, 19: 243-252.
Samantaray, K. and Mohanty, S. S. 1997. Interactions of dietary levels of protein and energy on fingerling snakehead, Channa striata. Aquaculture, 156: 245-253.
Sanz, A., Suarez, M. D., Hidalgo, M. C., Garcia gallego, M. and de la Higuera, M., 1993. Feeding of the European eels Anguilla anguilla. III. Influence of the relative proportions of the energy yielding nutrients. Comp. Biochem. Physiol.,105A:177-182.
Seenappa, D. and Devaraj, K. V., 1995. Effect of different levels of protein, fat and carbohydrate on growth, feed utilization and body carcass composition of fingerlings in Catla catla (Ham.). Aquaculture, 1001:283-291.
Serrano, J. A., Nematipour, G. R. and Gatlin III, D. M., 1992. Dietary protein requirement of the red drum (Sciaenops ocellatus) and relative use of dietary carbohydrate and lipid. Aquaculture, 101: 283-291.
Shiau, S.Y. and Hung, S.L., 1990. Influence of varying energy levels with two protein concentrations in diets for hybrid tilapia (Oreochromis niloticus× O. aureus).Aquaculture 161,357-364
Sheng, H. and He, X., 1994 Effects of dietary animal and plant protein ratios and energy levels on growth and body composition of bream (Megalobrama skolkovii Dybowski) fingerlings. Aquaculture, 127, 189-196
Shiau, S.Y. and Huang, S. L., 1990. Influence of varying energy levels two protein concentrations in diets for hybrid tilapia (Oreochromius niloticus × O. aureus) reared in seawater. Aquacultrue, 91: 143-152.
Shimeno, S., Hosokawa, H., Takeda, M. and Kajiyama, H., 1980 Effects of calorie to protein ratios in formulated diet on the growth, feed conversion and body composition of young yellowtail. Bull. Jap. Soc. Sci. Fish., 46, 9:1083-1087.
Shimeno, S., Kheyyali, D. and Shikata, T., 1995. Metabolic response to dietary carbohydrate to protein rations in carp. Fish. Sci. 61,2:277-281.
Shimeno, S., Ming, D-C. and Takeda, M., 1993. Metabolic response to dietary carbohydrate to lipid ratios in Oreochromis niloticus. Jap. Soc. Sci. Fish., 59,5:827-833.
Tabachek, J. L., 1986 Influence of dietary protein and lipid levels on growth, body composition and utilization efficiencies of Arctic charr, Salvelinus alpinus (L).. J. Fish. Bio, 29, 2:139-151.
Takeda, M., Shimeno, S., Hosokawa, H., Kajiyama, H. and Kaisyo, T., 1975. The effect of dietary calorie-to-protein ratio on the growth, feed conversion and body composition of young yellowtail. Bull. Jap. Soc. Sci. Fish. 41, 4:443-447.
Takeuchi, T., Yokoyama, M., Watanabe, T. and Ogino,C., 1978 Optimum ratio of dietary energy to protein for rainbow trout. Bull. Jap. Soc. Sci. Fish., 44, 7:729-732
Takeuchi, T., Shiina, Y. and Watanabe, T., 1991. Suitable protein and lipid levels in diet for fingerlings of red sea bream Pagrus major. Nippon Suisan Gakkaishi, 57:293-299.
Tung, P. H. and Shiau, S. Y. 1991. Effects of meal frequency on growth performance of hybrid tilapia, Oreochromis niloticus x O. aureus , fed different carbohydrate diets. Aquaculture, 92: 343-350
Vergara, M. A., Robaina, L., Izquierdo, M. and Higuera, M. L., 1996. Protein sparing effect of lipids in diets for fingerlings of gilthead sea bream. Fish. Sci., 62,4:624-628.
Wang, Z. X. and Liu. N. S.1986. Studies on diving bradycardia of Trionyx sinensis. Acta Herpetol. Sinica, 5: 17-23.
Wang, Z. X., Sun, N.Z. and Sheng, W.F., 1989. Aquatic respiration in soft-shelled turtles, Trionyx sinensis. Comp. Biochem. Physiol., 92A: 593-598.
Wilson, R. P., 1994. Utilization of dietary carbohydrate by fish. Aquaculture, 124:64-80.
Winfree, R. A. and Stickney, R. R. 1981. Effect of dietary protein and energy on growth, feed conversion efficiency and body composition of Tilapia aurea. J. Nutr., 111:1001-1012.
Woods, L. C. III., Yust, D., McLeod, C. and Subramanyam, M., 1995. Effects of dietary protein:energy ratio on weight gain, body composition, serum glucose and triglyceride levels, and liver function of striped bass. Aquaculture waste. Water. sci. technol., 31: 195-203,
Yong, W. Y., Takeuchi, T. and Watanabe, T., 1989. Relationship between digestible energy contents and optimum energy to protein ratio in Oreochromis niloticus diet. Bull. Jap. Soc. Sci. Fish., 55: 869-873,
Yoshimatsu, T., Furuichi, M, and Kitajima, C., 1992. Optimum level of protein in purified experimental diets for redlip mullet. Nippin Suisan Gakkaishi, 58: 2111-21117.
Yousif, O. M., Osman, M. F., Anawhi, A. A., and Cherian, T., 1996. Optimum protein-to-energy ratio for two size groups of rabbitfish, Siganus canaliculatus (Park). Aquacult. Nutr, 2:229-233,
川崎義一1986。水產養殖講座:養殖,23卷12月號,66-71
中華民國台灣地區漁業年報,1977-2001。台灣省農林廳漁業局
王風雷、李愛杰、景水才,1994。甲魚對蛋白質脂肪糖及鈣磷的適宜需要量。中國水產科學,3: 34-40
王道尊、湯崢嶸、譚玉鈞,1995。中華鱉(Trionyx sinensis)生化組成的分析。魚蝦類營養研究進展(第二集)。青島海洋大學出版社,中國青島。pp.233-248
王實賢、雷逢玉、李生武、聶東增、李國柱、卓君華,1991。人工飼料條件下甲魚的生長。水產學報,15: 283-290
包吉墅、劉春、高曉莉、谷震、楊秀閣,1992。稚鱉的營養素需要量及飼料最適能量蛋白比。水產學報,16: 365-371
余廷基,1963。甲魚 (鱉) 之養殖。台灣省水產試驗所
金征宇、徐學明,1995。鱉的人工養殖與飼料營養。中國飼料,17: 12-14
洪聖宗,1999。飼料中不同油脂含量及來源對中華鱉稚鱉成長與活存之影響。國立台灣海洋大學水產養殖研究所碩士論文
徐旭陌、曾訓江、劉素文、徐德平,1991。甲魚對蛋白質的最適需要量。飼料研究,5: 7-9
馬健,1997。鱉膨化飼料的研制及飼餵技術。中國水產學會動物營養與飼料研究會論文集,pp.262-267
涂澇、黃勇軍,1995 甲魚配合飼料中蛋白質脂肪以及糖類適宜含量初探。水產科技情報,22: 17-20
張陳軍、朱金城,1997。甲魚飼料配置技術的研究。中國水產學會動物營養與飼料研究會論文集,pp.258-261
趙肯堂. 1997. 中國鱉科動物分類研究. 趙爾宓、周久發、周婷編.中國龜鱉研究, 四川動物雜誌, 成都 pp. 55-64
楊先東、柯福恩、賀路、劉仲琪、楊文華,1995。中華鱉稚鱉對水體鹽度和酸鹼度敏感性的研究。淡水漁業,25: 3-6
程伶,1993。甲魚營養與飼養的研究。飼料工業,14(12): 35-37
楊國華、陳迪虎、王繼東、張忠華,1997。稚鱉營養需求的研究。中國水產學會動物營養與飼料研究會論文集,pp. 241-249
孫鶴田、陳子群、王志忠、曹振杰、劉幼華、馬俊玲、張家國、楊德光,1997。 中華鱉對蛋白質、脂肪、糖、混合無肌鹽及胺基酸適宜需要量的研究。中國水產學會動物營養與飼料研究會論文集,pp.250-257
鄭文騰、王俊昇、陳建初,1998。市售不同性狀甲魚人工配合飼料對甲魚之成長試驗。中國水產,548: 3-13
廖林彥,1999。中華鱉之蛋白質需求量與降溫、回溫處理後對成長的體成分的影響。國立台灣海洋大學水產養殖研究所碩士論文
蕭明政,1994。中國鱉的蛋白質需求量及飼料能量(脂質)含量對其成長及體成分的影響。國立台灣海洋大學水產養殖研究所碩士論文

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔