(3.230.173.249) 您好!臺灣時間:2021/04/18 06:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鐘國銘
研究生(外文):Kou-Min Chang
論文名稱:利用反應曲面法探討幾丁聚醣-褐藻酸鈉複合膜之物化特性與其在中式香腸腸衣之應用
論文名稱(外文):Effect of the physical-chemical properties of chitosan-sodium alginate complex membrane via response surface methodology (RSM) and its application in the casing of the Chinses sausage
指導教授:陳榮輝陳榮輝引用關係
指導教授(外文):R. H. Chen
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:101
中文關鍵詞:幾丁聚醣褐藻酸鈉聚電解質複合物腸衣
外文關鍵詞:chitosansodium alginatepolyelectrolyte complexcasing
相關次數:
  • 被引用被引用:7
  • 點閱點閱:606
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:188
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究之目的在探討幾丁聚醣之分子量、褐藻酸鈉溶液之濃度、幾丁聚醣溶液之pH對製備幾丁聚醣與褐藻酸鈉之聚電解質複合之物物化性質的影響與幾丁聚醣-褐藻酸鈉複合膜在人工腸衣的製備與適用性的探討。物化性質的探討包含了複合膜的復水性、拉張力、拉張變形度、熱性質與水氣透過率與分析複合膜中幾丁聚醣與褐藻酸鈉的組成比。利用大頭紅蝦的加工廢棄物來萃取幾丁質,並以熱鹼的去乙醯作用來製備高去乙醯度的幾丁聚醣,再經鹽酸的降解可以得到相同去乙醯度不同分子量幾丁聚醣,並使用反應曲面法來設計實驗條件,以相同去乙醯度不同分子量幾丁聚醣與褐藻酸鈉製備複合膜,SAS統計分析系統來做回歸分析,以探討幾丁聚醣之分子量、褐藻酸鈉溶液的濃度與幾丁聚醣溶液之pH對於複合膜的物化性質之影響,其結果如下:
高去乙醯度 (DD = 93%) 之幾丁聚醣在8N鹽酸55℃的降解下對其去乙醯度並無顯著 (DD = 93% ± 2) 的影響,但其分子量的降解會隨著時間的增加而有顯著的下降,當分子量變為原本的1/10其降解速率會趨於平緩,主要為N-乙醯葡萄胺醣之醣苷鍵的活化能較低。
綜合DSC與反應面法之結果得知,幾丁聚醣之分子量、褐藻酸鈉溶液的濃度與幾丁聚醣溶液之pH均會影響幾丁聚醣與褐藻酸鈉的交互作用,(1) 當pH越高時,幾丁聚醣與褐藻酸鈉的作用力可能主要為分子鏈間的交纏作用,反之,其作用力則可能主要為離子性鍵結;(2) 當褐藻酸鈉溶液之濃度越高時,幾丁聚醣與褐藻酸鈉的作用力趨向離子性鍵結,反之,其作用力則趨向於分子鏈間的交纏作用;(3) 幾丁聚醣之分子量越低時,幾丁聚醣與褐藻酸鈉的作用力趨向離子性鍵結,當幾丁聚醣之分子量越高時,因為分子鏈的增長會有助於分子間的交纏,但分子鏈的增長時,胺基的數目亦會增加,使得幾丁聚醣與褐藻酸鈉的作用力趨向離子性鍵結,因此高分子量的幾丁聚醣對於交互作用的影響會受到幾丁聚醣溶液之pH與褐藻酸鈉溶液之濃度的影響。由反應曲面法得知,幾丁聚醣與褐藻酸鈉作用最適的分子量為150 kDa ~ 160 kDa,幾丁聚醣溶液之pH與褐藻酸鈉溶液之濃度的影響則依條件而異。
由適用性的實驗得知,幾丁聚醣腸衣較膠原腸衣更耐熱油而不會破裂,可能是其反應為脫水作用結合區較不易被破壞;而在水煮過程中,膠原腸衣可保持原狀,而幾丁聚醣-褐藻酸鈉腸衣則會成潰爛狀,可能是水分子的滲透與熱的作用,使得其結合區與離子性鍵結被破壞,因此,幾丁聚醣-褐藻酸鈉腸衣較可應用在熱油處理上。
Abstract
The aims of the study are to explore the effects of the molecular weight of chitosan, the concentration of sodium alginate solution and the pH of chitosan solution on the physical-chemical properties of the chitosan-sodium alginate polyelectrolyte complex (CS-AL PEC) and to establish the application conditions of the CS-AL PEC casing. The physical-chemical properties studied including the rehydration property, tensile stress, tensile strain and thermal property and the analyzation of the composite ratio of chitosan and sodium alginate in the PEC. Chitin was extracted from red shrimp (Solemocera prominenitis) processed waste, then the high degree of deacetylated chitosan was prepared by hot alkali deacetylation. The HCl degradation on chitosan prepared were used to get the same degree of deacetylation but different molecular weight chitosans. Response surface methodology (RSM) was used to set the experimental design. The same degree of deacetylation but different molecular weight chitosans and sodium alginate were used to prepare the PEC. SAS statistics analysis package was used to regressing the data of the experiments and the results obtained were as following:
During hydrolysis of high degree of deacetylated chitosan (DD = 93%) by HCl (8N) at 55℃, changed in the degree of deacetylation was not significant. However the molecular weight decreased significantly over time. At the time, the molecular weight decreased to 1/10 of the original molecular weight, the rate of degradation became level off. It is because the activity energy of glucosidic bond of N-acetyl-glucosamine was lower.
The results of differential scanning calorimeter (DSC) and RSM studies show that the properties of the CS-AL PEC affected by the molecular weight of chitosans, the concentration of sodium alginate solution and the pH of chitosan solution. The results show that (1) higher chitosan solution pHs used in the system, the interaction of chitosan and sodium alginate was mainly due to entanglement between chitosan and alginate molecules. On the other hand, lower chitosan solution pH, the interaction of chitosan and sodium alginate mainly via the ionic bond. (2) higher sodium alginate concentration used in the system, the interaction of chitosan and sodium alginate mainly via the ionic bond. On the other hand, lower sodium alginate solution, the interaction of chitosan and sodium alginate tended to be the entanglement of molecular chains. (3) lower molecular weight of chitosan in the system, the interaction of chitosan and sodium alginate tended to be the ionic bond. However, higher molecular weight of chitosans, the interaction of chitosan and sodium alginate tended to be the entanglement of molecular chains. It may be due to that the longer chain molecule facilitate the entanglement. However, the longer the molecular chain of chitosan, the higher the numbers of amino group have. The interaction of chitosan and sodium alginate will tend to be the ionic bond. Therefore, the interaction of the high molecular weight chitosan will be affected by the pH of chitosan solution and the concentration of sodium alginate solution in the system. The results show that the optimal molecular weight of chitosan is 150 ~ 160 kDa and the pH of chitosan solution and the concentration of sodium alginate solution depended on the conditions used.
The CS-AL PEC casing was more endured to be ruptured in deep frying treatment than gelatin casing. It maybe due to the junction zone was resistant to be destroyed in the frying treatment. During boiling, the gelation casing could sustain the original shape, but the CS-AL casing could not. It maybe due to the destruction of the junction zone and ionic bond by the permeation of water molecule and hydrolysis process. Therefore, the CS-AL casing was more suitable to be used in the frying treatment.
目錄
摘要................................................................................................................... Ⅳ
Abstract............................................................................................................. Ⅵ
一. 前言............................................................................................................ 1
二. 文獻整理.................................................................................................... 3
1. 幾丁質與幾丁聚醣的來源、化學結構................................................. 3
2. 幾丁質與幾丁聚醣在食品上的應用.................................................... 4
2.1 抑菌作用.......................................................................................... 4
2.2 食品加工.......................................................................................... 5
2.3 膳食纖維.......................................................................................... 5
2.4 抗氧化作用...................................................................................... 6
2.5 保水與乳化作用.............................................................................. 6
2.6 其他食品應用.................................................................................. 6
2.7 食用幾丁質與幾丁聚醣的安全性及營養評估.............................. 6
3. 幾丁質類物質的凝膠製備…………………………………….…....... 7
4. 褐藻酸鈉的來源、化學結構................................................................. 7
5. 褐藻酸鈉的凝膠機制............................................................................ 8
6. 水合膠 (Hydrogel) 的定義、種類與應用........................................... 9
7. 幾丁聚醣-褐藻酸鈉之離子性水合膠................................................... 10
7.1 聚電解質複合物 (Polyelectrolyte complex, PEC)......................... 10
7.2 幾丁聚醣-褐藻酸鈉之離子性水合膠的應用................................. 11
8. 幾丁聚醣對幾丁聚醣-褐藻酸鹽膠體的影響....................................... 12
8.1 幾丁聚醣之乙醯度與醯基對幾丁聚醣-褐藻酸鹽膠體的影響..... 12
8.2 幾丁聚醣之分子量對幾丁聚醣-褐藻酸鹽膠體的影響................. 12
9. pH與鈣離子對幾丁聚醣-褐藻酸鹽膠體的影響.................................. 13
9.1 pH對幾丁聚醣-褐藻酸鹽膠體的影響............................................ 13
9.2 鈣離子對幾丁聚醣-褐藻酸鹽膠體的影響..................................... 14
10. 不同腸衣對中式香腸品質的影響...................................................... 14
10.1 腸衣之簡介.................................................................................... 14
10.2 腸衣對中式香腸品質的影響........................................................ 15
三. 材料與方法................................................................................................ 18
1. 材料........................................................................................................ 18
2. 方法........................................................................................................ 18
2.1 幾丁質的製備.................................................................................. 18
2.2 幾丁聚醣的製備.............................................................................. 18
2.3 相同去乙醯度不同分子量之幾丁聚醣的製備.............................. 18
2.4 幾丁聚醣之去乙醯度的測定.......................................................... 18
2.5 幾丁聚醣之分子量的測定.............................................................. 19
2.6 幾丁聚醣之錳含量的測定.............................................................. 19
2.6.1 樣品的分解............................................................................. 19
2.6.2原子吸光分光光譜儀的測定.................................................. 20
2.7 褐藻酸鈉分子量的測定.................................................................. 20
2.7.1. dn / dc 的測定........................................................................ 20
2.7.2 褐藻酸鈉分子量的測定......................................................... 20
2.8 褐藻酸鈉 M / G比的測定.............................................................. 21
2.9 幾丁聚醣-褐藻酸鈉複合膜的製備................................................. 21
2.10 複合膜的物性測定........................................................................ 22
2.10.1 厚度 (mm)............................................................................ 22
2.10.2 吸水膨潤率........................................................................... 22
2.10.3 拉張力 (kg / cm2) 與拉張變形度 (%)............................... 22
2.10.4 水汽透過率 (water vapor transmission rate, WVTR)......... 22
2.10.5 Differential scanning calorimetry (DSC)............................... 23
2.10.6 複合膜中幾丁聚醣與褐藻酸鈉的組成比........................... 23
2.11 香腸的製造.................................................................................... 23
2.12 適用性試驗.................................................................................... 23
2.12.1 煎........................................................................................... 23
2.12.2 炸........................................................................................... 23
2.12.3 煮........................................................................................... 23
四. 結果與討論................................................................................................ 24
1. 酸水解幾丁聚醣的變化........................................................................ 24
2. 錳在幾丁聚醣處理過程中的含量........................................................ 24
3. 幾丁聚醣-褐藻酸鈉複合膜的物理性質............................................... 24
3.1 複合膜的復水率.............................................................................. 24
3.1.1 幾丁聚醣溶液之pH與褐藻酸鈉溶液之濃度對複合膜
之復水率的影響......................................................................
25
3.1.2 幾丁聚醣溶液之pH與幾丁聚醣之分子量對複合膜之
復水率的影響..........................................................................
26
3.1.3 幾丁聚醣之分子量與褐藻酸鈉溶液之濃度對複合膜之
復水率的影響..........................................................................
27
3.2 複合膜的拉張力.............................................................................. 28
3.2.1 幾丁聚醣溶液之pH與褐藻酸鈉溶液之濃度對複合膜
之拉張力的影響.....................................................................
29
3.2.2 幾丁聚醣溶液之pH與幾丁聚醣之分子量對複合膜之
拉張力的影響..........................................................................
29
3.2.3 幾丁聚醣之分子量與褐藻酸鈉溶液之濃度對複合膜之
拉張力的影響…......................................................................
30
3.3 複合膜的拉張變形度..................................................................... 31
3.3.1 幾丁聚醣溶液之pH與褐藻酸鈉溶液之濃度對複合膜
之拉張變形度的影響..............................................................
31
3.3.2 幾丁聚醣溶液之pH與幾丁聚醣之分子量對複合膜之
拉張變形度的影響…..............................................................
32
3.3.3 幾丁聚醣之分子量與褐藻酸鈉溶液之濃度對複合膜之
拉張變形度的影響..................................................................
33
4. 幾丁聚醣-褐藻酸鈉複合膜中幾丁聚醣與褐藻酸鈉之組成比........... 33
5. Differential scanning calorimetry 分析.................................................. 34
5.1 幾丁聚醣溶液之pH的影響........................................................... 34
5.2 褐藻酸鈉溶液之濃度的影響.......................................................... 35
5.3 幾丁聚醣之分子量的影響.............................................................. 35
6. 幾丁聚醣-褐藻酸鈉腸衣的是用性....................................................... 35
五. 結論............................................................................................................ 36
六. 參考文獻.................................................................................................... 37
圖....................................................................................................................... 50
表....................................................................................................................... 73
附表................................................................................................................... i
方紹威,1990,幾丁質與幾丁聚醣在廢水處理、生化、食品和醫藥上研究發展現況。藥物食品檢驗局調查研究年報,8:20 ~ 30。
王三郎,1996,水產資源利用性,高利圖書有限公司,台北。
李桂雲、黃彥琪、蔡正宗和紀學斌,1996,N-甲基幾丁聚醣 (NCMC)螯合鐵離子及在煮熟含鹽豬肉之抗氧化性探討,食品科學,23(4):608 ~ 616。
李中洋,1997,以化學法製備幾丁寡醣之探討、幾丁聚醣膜之物性與其生物分解性,國立臺灣海洋大學水產食品科學研究所,碩士論文。
坂本廣司和次田隆志,1994,キトサシの生理機能とその利用,食品と開發,29(3):22。
吳勇初、林致苑、黃淑貞、莊富源和王添進,1998,不同腸衣、脂肪、乾燥方式對中式香腸品質之影響,畜產品加工學術暨畜產工業交流研討會論文集,pp. 90 ~ 97。
林高塚,1981,香腸腸衣之改進,食品工業,13(9):43。
林高塚,1984,中式香腸-家庭式、工業式,現代肉品,2:6。
林俊煌,1992,不同去乙醯程度之幾丁聚醣的流變性與鏈柔軟度、膜之物理特性的關係,國立臺灣海洋大學水產食品科學研究所,碩士論文。
林亮全、陳計志和李學孚,1992,不同包裝型態對於中式香腸品質和亞硝酸根含量之影響,中國畜牧學會會誌,21(1):99。
林育德,2002,幾丁聚醣與褐藻酸鈉複合水合膠之物化特性,國立臺灣海洋大學食品科學研究所,碩士論文。
林翰儒和梁德馨,1994,SAS應用程式之初等統計分析,松崗電腦圖書資料股份有限公司,台北市。
柏榮生,1999,幾丁聚醣醋酸水溶液之光散射研究,私立元智大學化學工程研究所,碩士論文。
紀學斌,1999,不同腸衣、乾燥方式及充氣包裝對中式香腸品質之影響,食品科學,26(6):641~650。
宮尾茂雄,1995,キトサシの基礎と應用,防菌防黴,23(7):421。
陳明造,1989,肉品加工理論與應用,藝軒圖書出版社,台北市。
陳明造,1992,台灣肉品工業之現況與展望,食品資訊,83:23。
陳榮輝和金曉珍,1995,水產甲殼類廢棄物開發高經濟價值之幾丁質、幾丁聚醣、幾丁寡醣研究之規劃報導。科學發展月刊,23(6): 550 ~ 562。
陳美惠、莊淑惠和吳志律,1999,幾丁聚醣的物化性質,食品工業月刊,31(10):1 ~ 6。
郭建良,1995,低分子量幾丁聚醣對雙叉桿菌及其他細菌之影響,國立臺灣大學食品科技研究所,碩士論文。
郭俊欽和林菀暉,1993,乳酸鈉及醋酸鈉對中式香腸生菌數、pH及水活性之影響,東海學報,43:1069。
游淑媛、蔣見美和丘志威,1989,不同包裝方法對中式香腸貯藏品質之影響Ⅰ:微生物種類及菌數之變化,食品科學,16(4):394 ~ 407。
覃慧萍,2000,水性聚胺酯/幾丁聚醣聚合物之生物適用性研究,國立台灣大學化學工程研究所,碩士論文。
華宏達,1994,分子量、鏈柔性度、化學修飾對幾丁聚醣超過濾膜特性的影響,國立台灣海洋大學水產食品科學研究所,碩士論文。
鄒德純,2001,影響蔗糖擠壓造粒之因子及其在維生素C及阿斯匹靈控制釋放上之應用,國立台灣海洋大學食品科學研究所,碩士論文。
蔣見美、游淑媛和黃菜鳳,1990,不同包裝方法對中式香腸貯藏品質之影響Ⅱ:油脂及官能性質的變化,食品科學,17(1):23 ~ 36。
蔡敏郎,1993,不同分子量、不同去乙醯的幾丁聚醣溶液的流變性質與膠囊物性的關係,國立台灣海洋大學水產食品科學研究所,碩士論文。
鄧日青,1997,您對腸衣知多少?,畜牧半月刊,58(4):68 ~ 69。
Allan, C. R. and Hadwiger, L. A., 1979. The fungicidal effect of chitosan on fungi of varying cell wall composition. Experimental mycology. 3: 285-287.
Arai, K., Minumari, K. and Fujita, T. 1968. On the toxicity of chitosan. Bull. Tokai. Reg. Fish. Lab. 56: 899.
Bartkowiak, A. and Hunkeler, D. 1999. Alginate-oligochitosan micro- capsules . Control of mechanical resistance and permeability of the membrane. Chem. Mater. 11: 2486-2492.
Bartkowiak, A. and Hunkeler, D. 2000. Alginate-oligochitosan micro- capsules II. Control of mechanical resistance and permeability of the membrane. Chem. Mater. 12: 206-212.
Baxter, A., Dillon, M. and Taylor, K. D. A. 1992. Improved method for i.r. determination of the degree of N-acetylation of chitosan. Int. J. Biol. Macromol. 14: 166-169.
Bodmeier, R., Oh, K. H. and Pramar, Y. 1989. Preparation and evaluation of drug-contatining chitosan beads. Drug Develop. Ind. Pharma. 15 (9): 1475-1494.
Bough, W. A. and Landes, D. R. 1976. Recovery and nutrional evaluation of proteinaceous solids separated from whey by coagulation with chitosan. J. Dairy Sci. 59: 1874.
Bouhadir, K. H., Hausman, D. S. and Mooney, D. J. 1999. Synthesis of cross-linked poly(aldehyde guluronate) hydrogels. Polymer. 40: 3575- 3584.
Chandía, N. P., Matsuhiro, B. and Vásquez, A. E. 2001. Alginic acids in Lessonia trabeculata: Characterization by formic acid hydrolysis and FT-IR spectroscopy. Carbohydr. Polym. 46: 81-87.
Chen, R. H., Lin, J. H. and Yang, M. H. 1994. Relationships between the chain flexibilities of chitosan molecules and physical properties of their casted films. Carbohydr. Polym. 24: 41-46.
Chen, C, Liau, W. and Tsai, G. 1998. Antibacterial effects of N-sulfonated and N-sulfobenzoyl chitosan and application to oyster preservation. 61(9): 1124-1128.
Chenite, A., Buschmann, M., Wang, D., Chaput, C. and Kandani, N. 2001. Rheology characterization of thermogelling chitosan / glycerol- phosphate solutions. Carbohydr. Polym. 46: 39-47.
Clare, K. 1993. Algin. In〝Industrial Gums,〞R. L. Whistler and J. N. BeMiller (Eds.,) pp.105-143. Academic Press, Inc., San Diego, CA, USA.
Daly, M. M. and Knorr, D. 1988. Chitosan-alginate complex coacervate capsules: Effects of calcium chloride, plasticizers, and polyelectrolytes on mechanical stability. Biotech. Progress. 4(2): 76-81.
Darmadji, P. and Izumimoto M. 1994 Effect of chitosan in meat preservation . Meat Sci. 38(2): 243-254.
Denuziere, A., Ferrier, D. and Domard, A. 1996. Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes. Physico- chemical aspects. Carbohydr. Polym. 29: 317-323.
Draget, K. I., Varum, K. M. and Smidsrod, O. 1992. Chitosan crosslinked with Mo (VI) polyoxyanions: Effects of chemical composition. In: Advances in Chitin and Chitosan. Eds. Brine, C. J., Sandford, P. A. and Zikakis, J. P. Elsevier Appl. Sci., London, pp. 604-613.
Draget, K. I., Strand, B., Hartmann, M., Valla, S., Smidsrød, O. and Skjåk-Bræk, G. 2000. Ionic and acid gel formation of epimerized alginates; the effect of AlgE4. Int. J. Biol. Macromol. 27: 117-122.
Dumitriu, S., Magny, P., Montane, D., Vidal, P. F. and Chornet, E. 1994. Polyionic hydrogels obtained by complexation: Their properties as support for enzyme immobilization. J. Bioact. Compat. Polym. 9: 184-209.
Dumitriu, S. and Chornet, E. 1998. Inclusion and release of proteins from polysaccharide-based polyion complexes. Adv. drug delivery reviews. 31: 223-246.
Endo, S. Suzuki, K. and Marui, K. 1990. Water-in-oil emulsion-type fat compositions containing chitosan for margarine and their manufacture. Jap. Patent 02, 299, 545.
Enomoto, M., Hashimoto, M., Kuramae, T. and Kanno, M. 1992. Low molecular weight chitosan as anticholesterolemic. Japan Kokai Koho JP04, 108, 734.CA117: 104268.
Fan, S. W., Li, C. F. and Shih, D. Y. C. 1994. Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat. J. Food Proct. 56(2): 136-140.
FDA. 1978. “Bacteriological Analytical Manual.” Association of official Chemists. Washington, D.C.
Foegeding, E. A., Lanier, T. C. and Hultin, H. O. 1996. Characteristics of edible muscle tissues. Chap. 15. In: Food Chemistry 3rd Ed. by Fennema, O. R. Ed, Marcel, New York, pp: 902 - 906.
Fukuda, H. and Kikuchi, Y. 1978. Polyelectrolyte complexes of chitosan with sodium carboxymethyldextran. Bull. Chemical Society Japan. 51: 1142-1144.
Fukuda H. 1980. Polyelectrolyte complexes of chitosan with sodium carboxymethylcellulose. Bull. Chemical Society Japan. 53: 837-840.
Gåserød, O., Smidsrød, O. and Skjåk-Bræk, G. 1998. Microcapsules of alginate-chitosan I: A quantitative study of the interaction between alginate and chitosan. Biomaterials. 19: 1815-1825.
Gåserød O., Sannes A. and Skjåk-Bræk G. 1999. Microcapsules of alginate-chitosan II: A study of capsule stability and permeability. Biomaterials. 20: 773-783.
Gacesa, P., Squire, A. and Winterburn, P. J. 1983. The determination of the uronic acid composition of alginates anion-exchange liquid chromatography. Carbohydr. Res. 118: 1-8.
Hadwiger, L. A., Kendra, D. F., Fristensky, B. W. and Wagoner, W. 1986. Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. In "Chitin in nature and Technology" ed. by Muzzarelli, R., Jeniaux, C. and Gooday. Plenum Press, New York, pp. 209-214.
Hagino, Y. and Huang, S. 1995. Super absorbing gels derived from chitosan and sodium alginate. Polym. Mater. Sci. Eng. 72: 249-50.
Hanawa, N., Ro, K., Takeuchi, M., Nishitani, T. and Kanazawa, H. 1991. Fruits jellies containing chitosan, phosphates, and gelation agents and their manufacture. Jap. Patent 03, 127, 954.
Hart, R. 1989. Stable protein foams: a new technology with new uses. Prepared Food. 158(6): 71.
Haug, A. and Larsen, B. 1963. The solubility of alginate at low pH. Acta Chem. Scand. 17: 1653-1660.
Haug, A., Myklestad, S., Larsen, B. and SmidsrØd. 1967. Correlation between chemical structure and physical properties of alginates. Acta Chem. Scand. 21: 768-775.
Hayes, E. R. and Davies, D. H. 1978. Characterization of chitosan: Thermoreversible chitosan gels. In: Proceedings of The First Inter- national Confercene on Chitin/Chitosan. Eds. Muzzarelli, R. A. A. and Pariser, E. R. MTT Sea Grant Program, Cambridge, MA. pp. 193-198.
Hirano, S., Kondo, S. and Ohe, Y. 1975. Chitosan gel: A novel poly- saccharide gel. Polymer. 16: 622.
Hirano, S. and Ohe, Y. 1975. Chitosan gels: A novel molecular aggregation of chitosan in acidic solutions on a facile acetylation. Agric. Biol. Chem. 39(6): 1337-1338.
Hirano, S. 1978. A facile method for the preparation of novel membranes from N-acyl- and N-arylidene-chitosan gels. Agric. Biol. Chem. 42(10): 1939-1940.
Hirano, S., Tobetto, K., Hasegawa, M. and Noishiki, Y. 1980. Permeability properties of gels and membranes derived from chitosan. J. Biomedical Materials Res. 14: 477-486.
Hirano, S. 1990. Chitosan as an ingredient for domestic animal feeds. American Chemical Society. 38: 1214.
Hiroshi, F. 1978. In vitro clot formation on the polyelectrolyte complexes of sodium dextran sulfate with chitosan. J. Biomed. Mater. Res. 12: 531-539.
Hugerth, A., Caram-Lelham, N. and Sundeloef, L. O. 1997. The effect of charge density and conformation on the polyelectrolyte complex formation between carrageenan and chitosan. Carbohydr. Polym. 34: 149-156.
Huguet, M. L., Groboillot, A., Neufeld, R. J., Poncelet, D. and Dellacherie, E. 1994. Hemoglobin encapsulation in chitosan/calcium alginate beads. J. Appl. Polym. Sci. 51: 1427-1432.
Huguet, M. L., Neufeld, R. J. and Dellacherie, E. 1996a. Calcium- alginate beads coated with polycationic polymers: comparison of chitosan and DEAE-Dextran. Process Biochem. 31: 347-353.
Huguet, M. L. and Dellacherie, E. 1996b. Calcium-alginate beads coated with chitosan: Effect of the structure of encapsulated materials on their release. Process Biochem. 31: 745-751.
Hwang.C., Rha, C. K. and Sinskey, A. J. 1986. Encapsulation with chitosan: Trans-membrane diffusion of proteins in capsules. In: Chitin in Nature and Technology. ed. by Muzzarelli, R., Jeuniaux, C. and Gooday, G. W. Plenum Press, New York, pp. 389-396.
Kikuchi, Y. and Fukuda, H. 1974. Polyelectrolyte complexes of sodium dextran sulfate with chitosan. Makromol. Chem. 175: 3593-3596.
Kikuchi, Y. and Noda, A. 1976. Polyelectrolyte complexes of heparin with chitosan. J. Appl. Polym. Sci. 20: 2561-2563.
King, K. 1994. Changes in the functional properties and molecular weight of sodium alginate following irradiation. Food Hydrocolloid. 8: 83-96.
Knorr, D. 1982. Functional properties of chitin and chitosan. J. Food Sci. 47(2): 593-595.
Knorr, D. 1983. Dye binding properties of chitin and chitosan. J. Food Sci. 48: 36-41.
Knorr, D. 1984. Use of chitinous polymers in food - a challenge for food research and development. Food Tech. 38(1): 85-97.
Knorr, D. and Daly, M. 1988. Mechanics and diffusional changes observed in multi—layer chitosan/alginate coacervate capsules. Process Biochem. pp. 48-50.
Kokufuta, E. 1979. Colloid titration behavior of poly (ethyleneimine). Macromolecules. 12: 350-353.
Kosugi, J. Tadaaki, K. and Masayuki, F. 1981. Composite material of de- acetylated chitin and fibrous collagen, its production and use. Europ. Patent 0038628.
Kulkarni A. R., Soppimath K. S., Aminabhavi T. M., Dave A. M. and Mehta M. H. 2000. Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. J. Controlled Release. 63: 97-105.
Kuo, C. K. and Ma, P. X. 2001. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials. 22: 511-521.
Langmaak, L. 1961. Method of producing synthetic sausage casings. US patent 2,973,274.
Lee, K. Y., Park W. H. and Ha, W. S., 1997, Polyelectrolyte complexes of alginate with chitosan or its derivatives for microcapsules. J. Appl. Polym. Sci. 63: 425-432.
Lee, S. H. 1996. Effect of chitosan on emulsifyingn capacity of egg yolk. J. Korean Soc Food Nutr. 25(1): 215-222.
Leuba, J. L. and Stossel, P. 1986. Chitosan and other polyamines: anti- fungal activity and interaction with biology membranes. 1986. In "Chitin in nature and Technology" ed. by Muzzarelli, R., Jeniaux, C. and Gooday. Plenum Press, New York, pp. 215-222.
Liu, L. S., Liu, S. Q., Ng, S. Y., Froix, M., Ohno, T. and Heller, J. 1997. Controlled release of interleukin-2 for tumour immunotherapy using alginate / chitosan porous microspheres. J. Controlled Release. 43: 65-74.
Lorentzen, M. and Maage, A., 1999. Trace element status of juvenile Atlantic salmon Salmo salar L. fed a fish-meal based diet with or without supplementation of zinc, iron, manganese and copper from first feeding. Aquacult. Nutr. 5, 163-171.
Macleod, G. S., Collett, J. H. and Fell, J. T. 1999. The potential use of mixed films of pectin, chitosan and HPMC for bimodal drug release. J. Control. Release. 58: 303-310.
Maezaki, Y., Tsuji, K., Nakagawa, Y., Kawai, Y., Akimoto, M., Tsugita, T., Takekawa, W., Terada, A., Hara, H. and Mitsuoka, T. 1993. Hypocholesterolemic effect of chitosan in adult males. Biosci. Biotech. Biochem. 57(9): 1439-1444.
Manabe, M. Kuwabara, Y. and Otsuka, N. 1989. Improvement of texture of pickles with chitosan. Jap. Patent 01, 304, 843.
Martinsen, A., Skjåk-Bræk, G. and Smidsrød, O. 1989. Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotech. bioengin. 33: 79-89.
Matsumoto, T., Kawai, M. and Masuda, T. 1993. Rheologigal properties and fractal structure of concentrated polyion complexes of chitosan and alginate. Biorheology. 30: 435-441.
Mi, F. L., Kuan, C. Y., Shyu, S. S., Lee, S. T. and Chang, S. F. 2000. The study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release. Carbohydr. Polym. 41: 389-396.
Mi, F. L., Sung, H. W. and Shyu, S. S. 2002. Drug release from chitosan- alginate complex beads reinforced by a naturally occurring cross- linking agent. Carbohydr. Polym. 48: 61-72.
Mink, R. and Blackwell, J. 1978. The structure of α-chitin. J. Mol. Biol. 120: 167-181.
Moe, S. T., Draget, K. I., Skjåk-Bræk. G. and SmidsrØd, O. 1995. Alginates. Food Polysaccharides and Their Application. Ed. by Stebhen, A. M. Marcel Dekken, Inc., New York, pp. 245-286.
Murata, Y., Maeda, T., Miyamoto, E. and Kawashima, S. 1993. Preparation of chitosan-reinforced alginate gel beads-effects of chitosan on gel matrix erosion. Int. J. Pharm. 96: 139-145.
Muzzarelli, R. A. A. and Rocchetti, R. 1985. Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectro- photometry. Carbohydr. Polym. 5: 461-472.
Muzzarelli, R. A. A. 1997. Chitin. Pergamon Press, Oxford.
Nagyvary, J. J., Falk, J. D., Hill, M. L., Schmidt, M. L., Withins, A. K. and Braddbury, E. L. 1979. The hypolipidemic activity of chitosan and other polysaccharides in rats, Nutr. Rep. Int. 20(5): 677.
Niskioka, Y., Kyotani, S., Okamura, M., Miyazaki, M., Okazaki, K., Ohnishi, S., Yamamoto, Y. and Ito, K. 1990. Release characteristics of cisplatin chitosan microspheres and effect of containing chitin. Chem. Pharm. Bull. 38(10): 2871-2873.
Oerther, S., Maurin, A. C., Payan, E., Hubert, P., Lapicque, F., Presle, N., Dexheimer, J., Netter, P. and Lapicque, F. 2000. High interaction alginate-hyaluronate associations by hyaluronate deacetylation for the preparation of efficient biomaterials. Biopolymers. 54: 273-281.
Ouwerx, C., Velings, N., Mestdagh, M. M. and Axelos, M. A. V. 1998. Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polymer Gels and Networks. 6: 393-408.
Pandya, Y. and Knorr, D. 1991. Diffusion characteristics and properties of chitosan coacervate capsules. Process Biochem. 16: 75-81.
Pandya, Y. and Knorr, D.1993. Diffusion characteristics and properties of chitosan coacervate capsules. Process Biochem. 26: 75-81.
Peppas, N. A. 1996. Hydrogels In: Biomaterials Science. Ed. Ratner, B. D. Hoffman, A. S. Schoen, F. J. and Lemons, J. E. Academic Press San Diego. pp. 60- 64.
Poole, S. 1989. The foam-enhancing properties of basic biopolymers . Int. J. Food Sci. Technol. 24: 121.
Purnama, D. and Izumimoto, M. 1994. Effect of chitosan in meat preservation. Meat Sci. 38(2): 243-254.
Rinaudo, M., Milas, M. and Le Dung P. 1993. Characterization of chitosan. Influence of ionic strengh and degree of acetylation on chain expansion. Int. J. Biol. Macromol. 15: 281-285.
Roberts, G. A. F. 1989. Chitosan gels: Part 4. Chitosan-based thermally reversible gel. In: Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications. eds. Skjåk-Bræk, G., Anthonsen, T. and Sandford, P. Elsevier Appl. Sci., London, pp. 479-485.
Roberts, G. A. F. 1992. Chitin Chemistry. The Macmillan Press, London, pp. 1-53.
Ruel-Gariẻpy, E., Chenite, A., Chaput, C., Guirguis, S. and Leroux, J. C. 2000. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int. J. Pharm. 203: 89-98.
Sakiyama, T., Chu, C. H., Fujii, T. and Yano, T. 1993. Preparation of a polyelectrolyte complex gel from chitosan and κ-carrageenan and its pH- sensitive swelling. J. Appl. polym. Sci. 50: 2021-2025.
Sanofi Bio-industries. 1993. Hydrocolloids. Sanofi Bio-industries, Paris, France.
Shu X. Z. and Zhu K. J. 2000. A novel approach to prepare tripolyphosphate / chitosan complex beads for controlled release drug delivery. International Journal of Pharmaceutics. 201: 51-58.
Simsek-Egg, F. A., Bond, G. M. and Stringer, J. 2003. Polyelectrolyte complex formation between alginate and chitosan as a function of pH. Journal of Applied polymer Science . 88: 346-351.
Sweet, C. E. 1919. Sausage casing. US Patent 1,348,459.
Tanigawa, T., Tanaka, Y., Sashiwa, H., Saimoto, H. and Shigemasa, Y. 1992. Various biological effects of chitin derivatives In: Advances in chitin and chitosan, (Ed.) Brine, C. J., Sandford, P. A. and Zirkakis, J. P. pp. 206-215.
Terbojevich, M., Cosani, A., Focher, B. and Marsano, E. 1993. High- performancdgel-permeation chromatography of chitosan samples. Carbohydr. Res. 250: 301-314.
Terbojevich, M. and Cosani, A. 1996. Solution behaviour of chitin in di- metylacetamide / LiCl. In: Advances in Chitin Science, eds. Domard, A., Jeuniaux, C., Muzzarelli, R. and Roberts, G. Jacques Andre Publisher, France, pp. 333-339.
Thanoo, B. C., Sunny, M.C. and Jayakishnan, A. 1992. Cross-linked chitosan microspheres: preparation and evaluation as a matrix for the controlled release of pharmaceuticals. J. Pharm. Pharmacol. 44 (4): 283-286.
Thu, B., Bruheim, P., Espevil, T., Smidsrød, O., Soon-Shiong, P. and Skjåk-Bræk, G. 1996a. Alginate polycation microcapsules. I. Inter- action between alginate and polycation. Biomaterials. 17: 1031-1040.
Thu, B., Bruheim, P., Espevik, T., Smidsrød, O., Soon-Shiong, P. and Skjåk-Bræk, G. 1996b. Alginate polycation microcapsules. II. Some functional properties. Biomaterials. 17: 1069-1079.
Tsuchida, E. 1994. Formation of polyelectrolyte complexes and their structures. J. Macromol. Sci. Pure Appl. Chem. A31: 1-15.
Vårum, K. M., Ottøy, H. M., and Smidsrød, O., 2001, Acid hydrolysis of chitosans. Carbohydr. Polym. 46 (1): 89-98.
Vachoud, L., Zydowicz, N. and Domard, A. 1997. Formation and characterization of a physical chitin gel. Carbohydr. Res. 302: 169-177.
Vandenbossche, G. M. R., Oostveldt, P. V., Demeester, J. and Remon, J. P. 1993. The molecular weight cut-off of microcapsules is determined by the reaction between alginate and polylysine. Biotech. Bioeng. 42: 381-386.
Ventura, P. 1996. Lipid lowering activity of chitosan, a new dietary integrator. In: Muzzarelli, R. A. A., editor. Chitin Enzymology, Ancon, Italy: Atec Edizioni. pp. 322-336.
Viskase Co. 1994. Nojax® for Chinese sausage. Viskase Co. USA.
Wang, GH. 1992. Inhibition and inactivation of five species of foodborne pathogens by chitosan. J. Food Prot. 55(11): 916-919.
Weingand, R. 1957. Synthetic sausage casings. US patent 2,802,744.
Winterowd, J. G. and Sandford, P. A. 1995. Chitin and chitosan In: Food Polysaccharide and Their Application. Ed. Stephen, A. M. Marcel Dekker, Inc., New York, pp. 441-462.
Yamane, H. and Takada, K. 1991. Frozen desserts with good shape- retaining property and their manufacture with chitosan. Jap. Patent 03, 76, 537.
Yamaguchi, R., Arai, Y. and Itoh, T. 1982. A microfibril formation from depolymerized chitosan by N-acetylation. Biol. Chem. 46(9): 2379- 2381.
Yan, X. L., Khor, E. and Lim, L. Y. 2001. Chitosan-alginate film prepared with chitosans of different molecular weights. J. Biomed Mater. Res. (Appl. Biomater) 58: 358-365.
Yao, K. D., Peng, T., Feng, H. B. and He, Y. Y. 1994. Swelling kinetics and release characteristic of crosslinked chitosan: Polyether polymer network (semi-IPN) hydrogels. J. Polym. Sci. Part A: Polym. Chem. 32: 1213-1223.
Yeom, C. K., Kim, C. U., Kim, B. S., Kim, K. J. and Lee, J. M. 1998. Recovery of anionic surfactant by RO process. PartⅠ. Preparation of polyelectrolyte-complex anionic membrane. J. membrane Sci. 143: 207-218.
Yin, Y. J., Yao, K. D., and Ma B. I., 1999, Properties of polyelectrolyte complex films of chitosan and gelatin. Polym. Int. 48: 429-433.
Zydowict, N., Vachoud, L. and Domard, A. 1996. Influence of the acetylation degree of a chitin gel on its physical and chemical properties. In: Advances in Chitin Science. ed. by Domard, A., Jeuniaux, C., Muzzarelli, R. And Roberts, G. Jacques Andre Publisher, France, pp. 262-270.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔