(18.204.2.190) 您好!臺灣時間:2021/04/22 06:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:龍雅真
研究生(外文):Ya-Jane Lung
論文名稱:結合人工智慧於多感測器資料融合之設計
論文名稱(外文):Incorporating Artificial Intelligence into Multisensor Data Fusion Designs
指導教授:卓大靖
指導教授(外文):Dah-Jing Jwo
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:導航與通訊系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:64
中文關鍵詞:多感測器模糊邏輯基因演算法資料融合
外文關鍵詞:MultisensorFuzzy logicGenetic algorithmdata fusion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:425
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:105
  • 收藏至我的研究室書目清單書目收藏:0
多感測器資料融合乃處理及協調來自其他感測器和一些設備來源的訊息以提供一個較佳融合結果。此廣泛應用於軍事及非軍事領域上。 本文針對全連結分散型網路(Fully Connected Decentralized Network,簡稱FCDN)之資料融合架構,結合卡曼濾波器提出模糊基因演算之技術而構成智慧型連結分散型網路(Intelligent Connected Decentralized Network,簡稱ICDN),靈活分配訊息之傳輸以提高整合系統精度。首先,FCDN 之結構乃由許多節點(感測器)構成之網路,每個節點具備其獨立處理局部觀測量即與鄰近節點相互傳遞訊息之能力。而後藉由卡曼濾波器對於通訊連結之訊息作一局部估測。二者基於方差配合技術(Covariance matching technique)以調整測量噪音方差R所設計之模糊適應卡曼濾波器,同時考慮濾波器性能狀況設計模糊權重鑑別器。此結合二種機制之多感測側器架構,應用於追蹤探測、導航導引等之需求。最後,依上所述,使用GA扮演資料融合處理及補償模糊系統設計之重要角色。以追蹤飛行目標為例,ICDN架構比FCDN及傳統分散式(Classical Decentralized) CD架構於精度上有不錯的表現。
Multisensor data fusion is the processing and synergistic combination of information gathered from multiple sources and sensors to provide a better inference of phenomenon. It is being applied to the wide range applications including military and non-military fields. For tracking monitoring, an Intelligent Connected Decentralized Network (ICDN) data fusion architecture, which embeds Fuzzy-Genetic Algorithm (FG) and Kalman filtering technique, is explored. The overhead communication problem in FCDN will be resolved by ICDN. At first, describing the FCDN consists of nodes (sensors), each with its own processing facility, which takes local observations and shares information with other neighbor nodes. It then assimilates the communicated information and computes a local estimate using Kalman filter. Second, based on a covariance matching technique, fuzzy-adaptive Kalman filter and Weighted Fuzzy Assessor (WFA) is designed respectively in order to estimate the appropriate measurement noise covariance matrix R and assign a weight that indicates a degree of the filter performance. Finally, the Genetic Algorithm (GA) acts as an important role in ICDN architecture. It compensates the insufficiency of fuzzy logic system designed and overcomes the communication limitation of FCDN. The result shows good performance of ICDN rather than that FCDN. Even best than Classical Decentralized (CD) architecture whose sensor or node doesn’t transmit information with each other.
中文摘要 i
Abstract ii
Table of Contents iii
List of Figures v
List of Tables vii
Chapter 1 Introduction 1
1.1 Motivation 2
1.2 Background 3
1.3 Method and Procedure 4
1.4 Overview 5
Chapter 2 Data Fusion in Decentralized Network 7
2.1 Sensor Classification and Selection 8
2.1.1 The Fusion Architectures of Multisensor Systems 9
2.1.2 The Advantages of Decentralized System 12
2.1.3 A Outline of Decentralized Structures 13
2.1.4 The Limitations of A Fully Connected Decentralized Network 14
2.2 Decentralized Estimators 16
2.2.1 The Decentralized Kalman Filter (DKF) 16
2.2.2 The CKF and DKF Algorithm 17
2.3 The Application of Decentralized Data Fusion 23
Chapter 3 Intelligent Learning Methods 25
3.1 Fuzzy Logic 26
3.1.1 Adaptive Kalman Filter 27
3.1.2 Weighted Fuzzy Assessor 28
3.2 Genetic Algorithm 30
Chapter 4 A Fully Decentralized Network with Fuzzy-GA 33
4.1 The Structure of ICDN 35
4.2 An Illustrative Example 37
4.3 An Example of Tracking Object (1) 39
4.3.1 Fuzzy Logic System Design 41
4.3.2 Genetic Algorithm Design 43
4.4 Numerical experimental Results 44
4.5 Discussion 47
Chapter 5 Simulation and Discussion 48
5.1 An Illustrative Example (2) 48
5.2 An Example of Tracking Objective 49
5.2.1 Fuzzy Logic System Design 50
5.2.2 Genetic Algorithm Design 53
Chapter 6 Conclusions 60
References 62
[1] Eli, G., “Navigation and Control from Instrumentation to Information Management,” Journal of Guidance, Control and Dynamics, 1996
[2] Kaminer, I., Pascoal, A., Hallberg, E. and Silvestre, C., “Trajectory Tracking for Autonomous Vehicles: An Integrated Approach to Guidance and Control,” Journal of Guidance, Control and Dynamics, 1998
[3] Luo, R. C. and Kay, M. G., “Multisensor Integration and Fusion in Intelligent Systems,” IEEE Trans. Systems Man and Cybernetics, 1989.
[4] Fraden, J., “AIP Handbook of Modern Sensors,” AIP Press, 1995
[5] Klafter, R. D. and Chmielewski, T. A., “Robotic Engineering: An Integrated Approach,” Prentice Hall 1989
[6] Hu, H. and Probert, P. J., “Distributed Architectures for Sensing and Control in Obstacle Avoidance for Autonomous Vehicles,” In IARP int. conf. Multisensor data fusion, 1989
[7] Durrant-Whyte, H. and Mike, S., ”Data Fusion in Decentralized Sensing Networks,” In Proc. Fusion 2001, pp302-307, Montreal Canada, July 2001
[8] Bar-Shalom, Y. and Fortmann, T. E., “Tracking and Data Association,” Academic Press, 1988
[9] Bar-Shalom, Y. and Li, X., “Estimation and Tracking,” Artech House, 1993
[10] Maybeck, P. S., “Stochastic model, Estimation and Control,” Academic Press, Vol. 1, 1979
[11] Berg, T., “Model Distribution in Decentralized Multisensor Data Fusion,” PhD thesis, Oxford University U.K., 1993
[12] Rao, B. S. and Durrant-Whyte, H. F., “A Fully Decentralized Algorithm for Multisensor Kalman Filtering,” Technical Report 1787/89, Oxford University Robotics Research Group, 1989
[13] Zadeh, L. A., “Fuzzy Logic,” IEEE Computer, pp.83-89, 1988
[14] Mehra, R. K. “Approaches to Adaptive Filtering,” IEEE Trans. Automatic Control, AC-17, pp. 693-698, 1992
[15] Holland, J., “Adaptation in Natural and Artificial Systems,” The University of Michigan Press, Ann Arbor, 1975
[16] Delgado, K. A., “Analysis of The Behavior of A Class of Genetic Adaptive System,” Ph.D. thesis, Department of Computer and Communication Science, University of Michigan, 1975
[17] Goldberg, D. E., “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison Wesley, 1989
[18] Aggarwal, J. K., “Multisensor Fusion for Computer Vision,” NATO ASI Series. Springer-Verlag, 1993
[19] Durrant-Whyte, H. F. and Rao, B.S., “A Transputer-Base Architecture for Multisensor Data Fusion,” In Transputer/Occam Japan 3, 1990
[20] Stevens, A., Steven, M. and Durrant-Whyte, H. F., “Reliable Autonomous Navigation,” IEEE International Conference on Robotics and Automation, pp. 2607-2612, 1995
[21] Sukkarieh, S., Goktogan, A., Kim, J. H., Nettleton, E., Randle, J., Ridley, M., Wishart, S. and Durrant-Whyte, H. F., “Cooperative Data Fusion and Control Amongst Multiple Uninhabited Air Vehicles,” Australian Center for Field Robotics, University of Sydney, Sydney NSW 2006
[22] Varshney, P. K., “Multisensor Data Fusion,” Electronics and Communication Engineering Journal, Vol. 9, No. 6, pp.245-253, 1997
[23] Sorenson, H. W., “Least-Square Estimation: From Gauss to Kalman,” IEEE Spectrum, pp.63-68, July 1970
[24] Escamilla-Ambrosio, P. J. and Mort, N., “A Hybrid Kalman Filter-Fuzzy Logic Architecture for Multisensor Data Fusion,” Department of Automatic Control and System Engineering, University of Sheffield, 2001
[25] Hashemipour, H. R., ROY, S., and LAUB, A. J., “Decentralized Structures for Parallel Kalman Filter,” IEEE Trans., AC-33, pp.88-93, 1988
[26] Paik, B. S. and Oh, J. H., “Gain Fusion Algorithm for Decentralized Parallel Kalman Filters,” IEE Proc. Control Theory Appl. 2000
[27] Chen, G. and Chui, C. K., “A Modified Adaptive Kalman Filter for Real-Time Applications,” IEEE Trans. Aerospace and Electronic Systems. 1991
[28] Mutambara, G. O., “Decentralized Estimation and Control for Multisensor Systems,” CRC press, 1998
[29] 莊季高, 蔡政郁, 黃明德, “應用實數型基因演算法於非線性TRMS之定位控制,” 國立台灣海洋大學導航與通訊系, 基隆
[30] Hall, D. L., “Mathematical Techniques in Multisensor Data Fusion,” Artech House, 1992
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李錫津(民90)。教訓輔三合一的心念。教師天地,110期,4-5。
2. 吳天方、王國興(民89)。建構學習型的校園文化。學校行政,8期,20-24。
3. 吳清山 (民85)。追求高品質班級經營與輔導。學生輔導,45期,24-31。
4. 吳榮鎮(民91)。知識經濟時代的學校經營策略─「建立學生輔導新體制-教學、訓導、輔導三合一整合實驗方案」的時代意義與展望。學生輔導通訊,79期,8-17。
5. 何進財(民88a)。教、訓、輔三合一方案實施策略與未來展期。訓育研究,38卷1期,1-10。
6. 林志成(民88)。組織文化的功能暨其在學校經營上之應用。國立臺灣體育學院學報,4期,53-77。
7. 林慶國(民89)。從系統思考的觀念談建立教、訓、輔三合一的新體制。學生輔導,68期,114-119。
8. 秦夢群(民88b)。營造學習型組織學校:教育行政人員應有的體認與策略。教育資料與研究,27期,9-12。
9. 陳木金(民88)。從學校組織文化塑造談如何增進學校領導效能。學校行政,3期,15-29。
10. 陳李綢(民84)。一般專任教師的輔導知能訓練。學生輔導,41期,30 -33。
11. 黃有志(民88)。高雄師範大學教、訓、輔三合一方案。訓育研究,38期,25-30。
12. 傅木龍(民88)。論教訓輔三合一輔導新體制之理論基礎及其對學務工作發展之啟示,訓育研究,38期,14-24。
13. 傅木龍(民91)。回顧與前瞻─生活輔導之發展與願景,學生輔導,83期,8-25。
14. 唐璽惠(民91)。生活適應不良學生輔導策略,學生輔導,83期,70-83。
15. 蔡培村(民90)。教訓輔三合一的理論基礎。教師天地,110期,6-16 。
 
系統版面圖檔 系統版面圖檔