跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:7358:9a99:61b8:7c06) 您好!臺灣時間:2025/01/19 08:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱敏元
研究生(外文):Min-Yuan Chu
論文名稱:異質接面雙極性電晶體中鈍化層與可靠度之分析
論文名稱(外文):Passivation and Reliability Analysis for HBT
指導教授:羅文雄羅文雄引用關係
指導教授(外文):Wen-Shiung Lour
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:53
中文關鍵詞:鈍化層可靠度砷化鎵磷化銦鎵異質接面雙極性電晶體硫化
外文關鍵詞:PassivationReliabilityGaAsInGaPHBTSulfur treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,主要在探討異質接面雙極性電晶體中鈍化層與可靠度之分析。在鈍化層的研究上,我們提出以硫化銨液體對磷化銦鎵/砷化鎵異質接面雙極性電晶體做鈍化層的處理,其結果發現與傳統磷化銦鎵鈍化層做比較,在直流特性上有顯著的改善,而且均優於未做鈍化層之元件。
在另一方面,我們亦即針對其對溫度變化所造成的影響,包括理想因子,輸出特性,與補償電壓等特性。經由實驗後發現,當溫度升高時,所有的特性皆會隨溫度的上升,而有明顯變差的趨勢。

In this thesis, the analysis of passivation and reliability for heterojunction bipolar transistor(HBT) is investigated. For passivation, the InGaP/GaAs HBT carried out with the (NH4)2S solution to passivated is reported . Compare the sulfur-passivated HBT with InGaP-passivated HBT, an improvement is found for DC characteristics, and both better than non-passivated HBT.
Otherwise, we put emphasis on the effect with temperature, including ideality factor, I-V characteristic, and offset voltage. From the results of experiment, it is found that these characteristics will be poor with temperature stress.

Abstract (Chinese)…………………………………………………………Ⅰ
Abstract (English)…………………………………………………………Ⅱ
Contents………………………………………………………………………Ⅲ
Figure captions……………………………………………………………Ⅴ
Chapter 1 Introduction……………………………………………………1
Chapter 2 Passivation Analysis for HBT………………………………2
2-1 Introduction ………………………………………………2
2-2 Device Structure and Fabrication………………………4
2-3 Theory and Analysis ………………………………………8
2-3.1 Photoluminescence (PL)………………………………8
2-3.2 Transmission Line Model (TLM)………………………9
2-3.3 Ideality factor………………………………………13
2-3.4 Current gain…………………………………………………………14
2-4 Experimental Results and Discussion……………………………16
2-5 Conclusions……………………………………………………………20
Chapter 3 Reliability Analysis for HBT………………………………21
3-1 Introduction…………………………………………………21
3-2 Device Structure and Fabrication………………………22
3-3 Theory and Analysis………………………………………23
3-3.1 Forward current density……………………………23
3-3.2 Thermal effect…………………………………………25
3-3.3 Energy gap………………………………………………25
2-3.4 Offset voltage…………………………………………26
3-4 Experimental Results and Discussion……………………………28
3-5 Conclusions……………………………………………………………30
Chapter 4 Conclusions and Expectations………………………………31
References……………………………………………………………………32
Figures………………………………………………………………………37

[1] B. J. Skromme, C. J. Standroff, Y. Yablonovitch, and T. Gmitter, “Effects of passivating ionic films on the photoluminescence properties of GaAs,” Appl. Phys. Lett., vol. 51, pp. 2022-2024, 1987.
[2] R. Iyer, R. R. Chang, and D. L. Lile, “Sulfur as a surface passivation for InP,” Appl. Phys. Lett., vol. 53, pp. 134-136, 1988.
[3] L. Geelhaar, R. A. Bartynski, F. Ren, M. Schnoes, and D. Gmitter, “Photoluminescence and x-ray photoelectron spectroscopy study of S-passivated InGaAs(001),” J. Appl. Phys., vol. 80, pp. 3076-3082, 1996.
[4] C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett., vol. 51, pp. 33-35, 1987.
[5] H.L. Chuang, M.S. Carpenter, M.R. Melloch and M.S. Lundstrom, “Surface passivation effects of As2S3 glass on self-aligned AlGaAs/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 57, pp. 2113-2115, 1990.
[6] R. Draid, Z. H. Lu, S. Charbonneau, W. R. Mckinnon, S. Laframboise, P. J. Poole, and S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett., vol. 73, pp. 665-667, 1998.
[7] W. S. Lour, “Investigation of doping-spike effect on InGaP/GaAs single heterojunction bipolar transistor,” Solid-State Electronics, vol.41, no.1, pp. 11-16, 1997.
[8] E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared InP/In0.53Ga0.47As surfaces,” Appl. Phys. Lett., vol. 60, pp. 371-373, 1992.
[9] S. J. Pearton, F. Ren, W. S. Hobson, C. R. Abernathy, R. L. Masaitis, and U. K. Chakrabarti, “Surface recombination velocities on processed InGaP p-n junctions,” Appl. Phys. Lett., vol. 63, pp. 3610-3612, 1993.
[10] S. P. McAlister, R. W. McKinnon, and R. Driad, “Use of dipole doping to suppress switching in indium phosphide double heterojunction bipolar transistors,” J. Appl. Phys., vol. 82, pp. 5231-5234, 1997.
[11] P. S. Dutta, K. S. Sangunni, H. L. Bhat, and Vikram Kumar, “Sulphur passivation of gallium antimonide surfaces,” Appl. Phys. Lett., vol. 65, pp. 1695-1697, 1994.
[12] Z. H. Lu, M. J. Graham, X. H. Feng, and B. X. Yang, “Structure of S-passivated InP(100)-(1x1) surface,” Appl. Phys. Lett., vol. 60, pp. 2773-2775, 1992.
[13] U. Mohideen, W. S. Hobson, S. J. Pearton, F. Ren, and R. E. Slusher, “GaAs/AlGaAs microdisk lasers,” Appl. Phys. Lett., vol. 64, pp. 1911-1913, 1994.
[14] Z. H. Lu and M. J. Graham, “Structure of S on passivated GaAs (100),” Appl. Phys. Lett., vol. 62, pp. 2932-2934, 1993.
[15] June O Song, Seong-Ju Park, and Tae-Yeon Seong, “Effects of sulfur passivation on Ti/Al ohmic contacts to n-type GaN using CH3CSNH2 solution,” Appl. Phys. Lett., vol. 80, pp. 3129-3131, 2002.
[16] X. A. Cao, S. J. Pearton, G. Dang, A. P. Zhang, F. Ren, and J. M. Van Hove, “Effects of interfacial oxides on schottky barrier contacts to n- and p-type GaN,” Appl. Phys. Lett., 75, 4130 (1999).
[17] R. N. Norttenburg, C. J. Sandroff, D. A. Humphrey, T. H. Hollenbeck, and R. Bhat, “Near-ideal transport in an AlGaAs/GaAs heterostructure bipolar transistor by Na2S‧9H2O regrowth,”Appl. Phys. Lett., vol. 52, pp. 218-220, 1988.
[18] J. Massies, J. Chaplart, M. Laviron, and N. T. Linh, “Monocrystalline aluminium ohmic contact to n-GaAs by H2S adsorption,” Appl. Phys. Lett., vol. 38, pp. 693-695, 1981.
[19] R. J. Nelson, J. S. Williams, H. J. Leamy, B. Miller, H. C. Casey, Jr., B. A. Parkinson, and A. Heller, “Reduction of GaAs surface recombination velocity by chemical treatment,” Appl. Phys. Lett., vol. 36, pp. 76-78, 1980.
[20] U. Schade, St. Kollakowski, E. H. Bottcher, and D. Bimberg, “Improved performance of large-area InP/InGaAs metal-semiconductor-metal photodetectors by sulfur passivation,” Appl. Phys. Lett., vol. 64, pp. 1389-1391, 1994.
[21] S. D. Offsey, J. M. Woodall, A. C. Warren, P. D. Kirchner, T. I. Chappell, and G. D. Pettit, “Unpinned (100) GaAs surfaces in air using photochemistry,” Appl. Phys. Lett., vol. 48, pp. 475-477, 1986.
[22] W.S. Lour, “High-gain, low-offset-voltage and zero potential spike by InGaP/GaAs d-doped single heterojunction bipolar transistor (d-SHBT),” IEEE Trans. Electron Devices, vol. 44, no.2, pp. 346-348, 1997.
[23] W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, no. 6, pp. 304-306, 1999.
[24] W. S. Lour, Y. W. Wu, S. W. Tan M. K. Tsai and Y. J. Yang, “Al0.45Ga0.55As/GaAs HBT with low turn-on voltage and performance improvement by wet-oxidized graded-like superlattice-emitter,” Appl. Phys. Lett., vol. 80, no. 18, pp. 3436-3438, 2002.
[25] Sze, S. M. Semiconductor Devices Physics and Technology, 2nd edition, New York: Wiley, 1983.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top