|
[1] B. J. Skromme, C. J. Standroff, Y. Yablonovitch, and T. Gmitter, “Effects of passivating ionic films on the photoluminescence properties of GaAs,” Appl. Phys. Lett., vol. 51, pp. 2022-2024, 1987. [2] R. Iyer, R. R. Chang, and D. L. Lile, “Sulfur as a surface passivation for InP,” Appl. Phys. Lett., vol. 53, pp. 134-136, 1988. [3] L. Geelhaar, R. A. Bartynski, F. Ren, M. Schnoes, and D. Gmitter, “Photoluminescence and x-ray photoelectron spectroscopy study of S-passivated InGaAs(001),” J. Appl. Phys., vol. 80, pp. 3076-3082, 1996. [4] C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett., vol. 51, pp. 33-35, 1987. [5] H.L. Chuang, M.S. Carpenter, M.R. Melloch and M.S. Lundstrom, “Surface passivation effects of As2S3 glass on self-aligned AlGaAs/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 57, pp. 2113-2115, 1990. [6] R. Draid, Z. H. Lu, S. Charbonneau, W. R. Mckinnon, S. Laframboise, P. J. Poole, and S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett., vol. 73, pp. 665-667, 1998. [7] W. S. Lour, “Investigation of doping-spike effect on InGaP/GaAs single heterojunction bipolar transistor,” Solid-State Electronics, vol.41, no.1, pp. 11-16, 1997. [8] E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared InP/In0.53Ga0.47As surfaces,” Appl. Phys. Lett., vol. 60, pp. 371-373, 1992. [9] S. J. Pearton, F. Ren, W. S. Hobson, C. R. Abernathy, R. L. Masaitis, and U. K. Chakrabarti, “Surface recombination velocities on processed InGaP p-n junctions,” Appl. Phys. Lett., vol. 63, pp. 3610-3612, 1993. [10] S. P. McAlister, R. W. McKinnon, and R. Driad, “Use of dipole doping to suppress switching in indium phosphide double heterojunction bipolar transistors,” J. Appl. Phys., vol. 82, pp. 5231-5234, 1997. [11] P. S. Dutta, K. S. Sangunni, H. L. Bhat, and Vikram Kumar, “Sulphur passivation of gallium antimonide surfaces,” Appl. Phys. Lett., vol. 65, pp. 1695-1697, 1994. [12] Z. H. Lu, M. J. Graham, X. H. Feng, and B. X. Yang, “Structure of S-passivated InP(100)-(1x1) surface,” Appl. Phys. Lett., vol. 60, pp. 2773-2775, 1992. [13] U. Mohideen, W. S. Hobson, S. J. Pearton, F. Ren, and R. E. Slusher, “GaAs/AlGaAs microdisk lasers,” Appl. Phys. Lett., vol. 64, pp. 1911-1913, 1994. [14] Z. H. Lu and M. J. Graham, “Structure of S on passivated GaAs (100),” Appl. Phys. Lett., vol. 62, pp. 2932-2934, 1993. [15] June O Song, Seong-Ju Park, and Tae-Yeon Seong, “Effects of sulfur passivation on Ti/Al ohmic contacts to n-type GaN using CH3CSNH2 solution,” Appl. Phys. Lett., vol. 80, pp. 3129-3131, 2002. [16] X. A. Cao, S. J. Pearton, G. Dang, A. P. Zhang, F. Ren, and J. M. Van Hove, “Effects of interfacial oxides on schottky barrier contacts to n- and p-type GaN,” Appl. Phys. Lett., 75, 4130 (1999). [17] R. N. Norttenburg, C. J. Sandroff, D. A. Humphrey, T. H. Hollenbeck, and R. Bhat, “Near-ideal transport in an AlGaAs/GaAs heterostructure bipolar transistor by Na2S‧9H2O regrowth,”Appl. Phys. Lett., vol. 52, pp. 218-220, 1988. [18] J. Massies, J. Chaplart, M. Laviron, and N. T. Linh, “Monocrystalline aluminium ohmic contact to n-GaAs by H2S adsorption,” Appl. Phys. Lett., vol. 38, pp. 693-695, 1981. [19] R. J. Nelson, J. S. Williams, H. J. Leamy, B. Miller, H. C. Casey, Jr., B. A. Parkinson, and A. Heller, “Reduction of GaAs surface recombination velocity by chemical treatment,” Appl. Phys. Lett., vol. 36, pp. 76-78, 1980. [20] U. Schade, St. Kollakowski, E. H. Bottcher, and D. Bimberg, “Improved performance of large-area InP/InGaAs metal-semiconductor-metal photodetectors by sulfur passivation,” Appl. Phys. Lett., vol. 64, pp. 1389-1391, 1994. [21] S. D. Offsey, J. M. Woodall, A. C. Warren, P. D. Kirchner, T. I. Chappell, and G. D. Pettit, “Unpinned (100) GaAs surfaces in air using photochemistry,” Appl. Phys. Lett., vol. 48, pp. 475-477, 1986. [22] W.S. Lour, “High-gain, low-offset-voltage and zero potential spike by InGaP/GaAs d-doped single heterojunction bipolar transistor (d-SHBT),” IEEE Trans. Electron Devices, vol. 44, no.2, pp. 346-348, 1997. [23] W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, no. 6, pp. 304-306, 1999. [24] W. S. Lour, Y. W. Wu, S. W. Tan M. K. Tsai and Y. J. Yang, “Al0.45Ga0.55As/GaAs HBT with low turn-on voltage and performance improvement by wet-oxidized graded-like superlattice-emitter,” Appl. Phys. Lett., vol. 80, no. 18, pp. 3436-3438, 2002. [25] Sze, S. M. Semiconductor Devices Physics and Technology, 2nd edition, New York: Wiley, 1983.
|