|
[1] J. H. Richmond, “A wire-grid model for scattering by conducting bodies,” IEEE Trans. Antennas Propagat., vol. 14, no. 6, pp. 782-786, Nov. 1966. [2] N. N. Wang, J. H. Richmond, and M. C. Gilreath, “Sinusoidal reaction formulation for radiation and scattering from conducting surfaces,” IEEE Trans. Antennas Propagat., vol. 23, no. 3, pp. 376-382, May 1975. [3] E. H. Newman and D. M. Pozar, “Electromagnetic modeling of composite wire and surface geometries,” IEEE Trans. Antennas Propagat., vol. 26, no. 6, pp. 784-789, Nov. 1978. [4] A. W. Glisson and D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,” IEEE Trans. Antennas Propagat., vol. 28, no. 5, pp. 593-603, Sept. 1980. [5] J. J. H. Wang, “Numerical analysis of three-dimension arbitrarily-shaped conducting scatters by trilateral surface cell modeling,” Radio Sci., vol. 13, no. 6, pp. 947-952, Nov.-Dec. 1978. [6] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propagat., vol. 30, no. 3, pp. 409-418, May 1982. [7] E. H. Newman and P. Tulyatha, “A surface patch model for polygonal plates,” IEEE Trans. Antennas Propagat., vol. 30, no. 4, pp. 588-593, July 1982. [8] E. H. Newman, P. Alexandroupoulos, and E. K. Walton, “Polygonal plate modeling of realistic structures,” IEEE Trans. Antennas Propagat., vol. 32, no. 7, pp. 742-747, July 1984. [9] D. L. Knepp and J. Goldhirsh, “Numerical analysis of electromagnetic radiation Properties of Smooth Conducting Bodies of Arbitrary Shape,” IEEE Trans. Antennas Propagat., vol. 20, no. 3, pp. 383-388, May 1972. [10] M. I. Sancer, R. L. McClary, and K. J. Glover, “Electromagnetic computation using parametric geometry,” Electromagnetics, vol. 10, no. 1-2, pp. 85-103, 1990. [11] D. L. Wilkes and C.-C. Cha, “Method of moments solution with parametric curved triangular patches,” 1991 International IEEE AP-S Symposium Digest, pp. 1512-1515, London, Ontario, Canada, 1991. [12] S. Wandzura, “Electric current basis functions for curved surfaces,” Electromagnetics, vol. 12, pp. 77-91, 1992. [13] L. Valle, F. Rivas, and M. F. Cátedra, “Combining the moment method with geometrical modeling by NURBS surfaces and Bézier patches,” IEEE Trans. Antennas Propagat., vol. 42, no. 3, pp. 373-381, March 1994. [14] G. E. Antilla and N. G. Alexopoulos, “Scattering from complex three-dimensional geometries using a curvilinear hybrid finite-element integral equation approach,” J. Optical Soc. America A, vol. 11, no. 4, pp. 1445-1457, April 1994. [15] J. M. Song and W. C. Chew, “Moment method solution using parametric geometry,” 1994 International IEEE AP-S Sympoisum Digest, vol. 3, pp. 2242-2245, Seattle, Washington, June 1994. [16] J. M. Song and W. C. Chew, “Moment method solutions using parametric geometry,” Journal of Electromagnetic Waves and Applications,” vol. 9, no. 1/2, pp.71-83, 1995. [17] J. M. Song and W. C. Chew, “Fast multipole method solution using parametric geometry,” Microwave and Optical Technology Letters, vol. 7, no. 16, pp. 760-765, Nov. 1994. [18] D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O.M.AL-Bundak and C.M.Butler, “Potential Integrals for Uniform and linear source distributions on polygonal and polyhedral domains,” IEEE Trans. Antennas Propagat., vol. AP-32, no.3, pp 276-281, March 1984. [19] L. R. Hamilton, P. A. Macdonald, M. A. Stalzer, R. S. Turley, J. L. Visher and S. M. Wandzura, “3D method of moments scattering computations using the fast multipole method,” IEEE Antennas and Propagation Society International Symposium, AP-S. Digest, vol. 1, pp.435-438, 1994. [20] J. M. Song and W. C. Chew, “Fast multipole method solution of three dimensional integral equation,” IEEE Antennas and Propagation Society International Symposium, AP-S. Digest, vol. 3, pp. 1528-1531, 1995. [21] R. P. Penno, G. A. Thiele, and K. M. Pasala, “Scattering from a perfectly conducting cube,” Proceedings of the IEEE, vol. 77, no. 5, pp. 815-823, May 1989. [22] C.-C. Lu, “Fast algorithms for solving integral equations of electromagnetic wave scattering,” Ph. D Thesis, University of Illinois at Urbana-Champaign, 1995. [23] M. J. Schuh and A. C. Woo, “The monostatic/bistatic approximation,” IEEE Antennas and Propagation Magazine, vol.36, no.4, pp.76-78 August 1994. [24] 位元文化,從C++、物件導向到視窗程式設計,文魁資訊,1999。 [25] N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, “The fast multipole method (FMM) for electromagnetic scattering problems,” IEEE Trans. Antennas Propagat., vol. AP-40, no.6, pp. 414-439, June 1992. [26] C. C. Lu and W. C. Chew, “A fast algorithm for solving hybrid integral equation,” IEEE Proc. Pt. H, vol.140, no.6, pp. 455-460, Dec.1993. [27] M. Abromowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York,1972. [28] J. Han and M. Kamber, Data Mining Concepts and Techniques, Morgan Kaufmann, 2001. [29] R. L. Wagner and W. C. Chew, “A ray-propagation fast multipole algorithm,” Microwave Opt. Tehnol. Lett., vol. 7, no. 10, pp. 435-438, July 1994. [30] J.-H. Lin, “A study of iterative method on forward and inverse scattering problems,” Ph. D Thesis, University of Illinois at Urbana-Champaign, 1995. [31] E. Darve, “The fast multipole method: numerical implementation,”Journal of Computational Physics 160, 195-240 (2000). [32] L. N. Medgynesi-Mitschang, J. M. Putnam, and M. B. Gedera. “Generalized method of moments for three-dimensional penetrable scatterers,” J. Opt. Soc. Am. A., vol.11, no.4, pp1383-1395, April 1994. [33] J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941. [34] E. Yip and B. Dembart. “Matrix assembly in FMM-MoM codes,” Tech. Rep. ISSTECH-97-002, The Boeing Company, Seattle, WA, January, 1997. [35] X. Q. Sheng, Jian-Ming Jin, Jiming Song, W. C. Chew, and Cai-Cheng Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propagat., vol. AP-46, no.11, pp. 1718-1726, Nov 1998. [36] R. E. Hodges and Y. Rahmat-Samii, “The evalution of MFIE integrals with the use of vector triangle basis functions,” Microwave Opt. Tehnol. Lett., vol. 14, No. 1, pp.9-14, January 1997. [37] J. M. Song, C. C. Lu, W. C. Chew, and S. W. Lee, “Fast illinois solver code (FISC),” IEEE Antennas and Propagation Magazine, vol. 40, no.3, pp. 27-34, June 1998. [38] T. B. A. Senior, “Approximate boundary conditions,” IEEE Trans. Antennas Propagat., vol. AP-29, pp. 826-829, 1981. [39] Ahmed A. Kishk, “Electromagnetic scattering from composite objects using a mixture of exact and impedance boundary conditions,” IEEE Trans. Antennas Propagat., vol. 39, no.6, pp. 826-833, June 1991. [40] N. A. Logan, “Survey of some early studies of the scattering of plane wave by a sphere,” Proc.IEEE 53, 773-785, 1965. [41] D. S. Wang and P. W. Barber, “Scattering by inhomogeneous nonspherical objects,” Appl. Opt. 18, 1190-1197, 1979. [42] P. W. Barber and C.Yeh, “Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies,” Appl. Opt. 14, 2864-2872, 1975. [43] M. A. Morgan, ed., Finite Element and Finite Difference Methods in Electromagnetic Scattering, Elsevier, Amsterdam, 1990. [44] A. Taflove and K. R. Umashankar, “Review of FDTD numerical modeling of electromagnetic wave scattering and radar cross-section,” Proc. IEEE 77, 682-699, 1989. [45] A. Lakhtakia, M. F. Iskander, and C. H. Durney, “An iterative extended boundary condition method for solving the absorption characteristics of lossy dielectric objects of large aspect ratio,” IEEE Trans. Microwave Theory Tech. MTT-31, 640-647, 1983. [46] R. C. Hansen, ed., Geometric Theory of Diffraction, Institute of Electrical and Electronics Engineers, New York, 1981. [47] P. Y. Ufimtsev, “Method of edge waves in physical theory of diffraction,” Foreign Tech. Div. Doc. ID FTD-HC-23-259-71, U.S. Air Force Command, Wright-Patterson Air Force Base Ohio, 1971. [48] L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, pp586-587, 1964. [49] R. F. Harrington, Field Computation by Moment Methods, ed., Kriedger, Malabar, Fla., 1982.
|