跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 22:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳政治
論文名稱:使用一般化數值動差法與多階層快速多極計算法求解三維複雜物體電磁散射問題
論文名稱(外文):Solving electromagnetic scattering problems of three-dimensional complex objects by generalized method of moment with multilevel fast multipole algorithm
指導教授:林俊華林俊華引用關係
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:一般化動差法多階層快速多極計算法積分方程
外文關鍵詞:generalized method of momentMLFMAmultilevel fast multipole algorithmintegral equation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個將數值動差法一般化的技巧。對任意形狀的三維複雜物體表面以三角平板來近似,並利用積分方程計算其散射場,此積分方程可轉變為矩陣方程式。方程式中關於不同點之相互作用矩陣不會因為散射體幾何狀況與邊界條件不同而改變。經過這樣的整理,可以歸納出計算不同電磁散射問題的固定程序。另一方面,在求解矩陣方程時,是以共軛梯度法來得到電磁流係數值,於是我們利用修改過後的多階層快速多極計算法來加速共軛梯度法中矩陣-向量相乘的速度,可將原來矩陣-向量相乘的計算量由 縮減為 ,其中N為未知數個數。因此在PC工作環境上,能處理較大尺寸的三維複雜物體。

In this thesis, we outline a generalized form of the method of moment technique. Integral equation formulations are used to solve for the scattering field of a three-dimensional complex object of arbitrary shape modeled by triangularly faceted surfaces and then are transformed into matrix equations, in which the matrices involving two-point interaction are independent of the geometry and boundary conditions of scatterers. This allows a unified procedure to be implemented for different scattering problems. In addition, the conjugate gradient method (CGM) is used to solve the matrix equation for the unknown expansion coefficients of the surface electric and magnetic current. We use the multilevel fast multipole algorithm (MLFMA) to speed up the matrix-vector multiplication in the CGM. The MLFMA reduces the complexity of a matrix-vector multiplication from to , where N is the number of unknowns. This algorithm requires less memory, and hence, large-sized complex objects and more practical problems can be solved on a PC.

目錄
摘要………………………………………………………………………i
目錄……………………………………………………………………iii
第一章 緒論……………………………………………………………1
1.1 研究動機與目的………………………………………………1
1.2 簡介……………………………………………………………2
1.3 文獻回顧……………………………………………………2
1.4 章節概要……………………………………………………3
第二章 數值理論分析與公式…………………………………………4
2.1三角平板近似物體……………………………………………4
2.2數值方法………………………………………………………4
2.2.1積分方程………………………………………………4
2.2.2數值動差法的一般化…………………………………7
2.2.2.1 、 、 矩陣………………………………8
2.2.2.2基底函數的一般化……………………………10
2.2.2.3如何決定基底函數……………………………14
2.2.2.4運算子…………………………………………16
2.2.3 數值積分………………………………………………17
2.2.3.1 奇異點的處理……………………………19
2.3共軛梯度法(CG)……………………………………………21
2.4 快速多極計算法(FMM)……………………………………22
2.4.1 FMM演算法…………………………………………23
2.5 多階層快速多極記算法(MLFMA)…………………………26
2.6 多極點展開式的極點數與方向取樣 ………………………29
2.6.1 極點個數的決定………………………………………29
2.6.2 方向取樣個數的決定…………………………………30
2.7 遠場雷達截面積 ……………………………………………30
第三章 數值程式實作…………………………………………………44
3.1 程式架構與類別 ……………………………………………45
3.1.1 基本類別………………………………………………45
3.1.2 應用類別………………………………………………46
3.2 程式流程 ……………………………………………………47
3.2.1 前續資料處理…………………………………………48
3.2.2 核心數值計算程式……………………………………49
3.2.3 後續處理………………………………………………50
第四章 計算結果與討論………………………………………………60
4.1 導體球………………………………………………………60
4.2 塗層導體球…………………………………………………60
4.3圓球體……………………………………………………61
4.4 橢球體………………………………………………………62
4.5 多球體………………………………………………………62
第五章 結論……………………………………………………………74
附錄A 邊界條件與輸入檔格式………………………………………75
參考文獻 ………………………………………………………………77

[1] J. H. Richmond, “A wire-grid model for scattering by conducting bodies,” IEEE Trans. Antennas Propagat., vol. 14, no. 6, pp. 782-786, Nov. 1966.
[2] N. N. Wang, J. H. Richmond, and M. C. Gilreath, “Sinusoidal reaction formulation for radiation and scattering from conducting surfaces,” IEEE Trans. Antennas Propagat., vol. 23, no. 3, pp. 376-382, May 1975.
[3] E. H. Newman and D. M. Pozar, “Electromagnetic modeling of composite wire and surface geometries,” IEEE Trans. Antennas Propagat., vol. 26, no. 6, pp. 784-789, Nov. 1978.
[4] A. W. Glisson and D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,” IEEE Trans. Antennas Propagat., vol. 28, no. 5, pp. 593-603, Sept. 1980.
[5] J. J. H. Wang, “Numerical analysis of three-dimension arbitrarily-shaped conducting scatters by trilateral surface cell modeling,” Radio Sci., vol. 13, no. 6, pp. 947-952, Nov.-Dec. 1978.
[6] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propagat., vol. 30, no. 3, pp. 409-418, May 1982.
[7] E. H. Newman and P. Tulyatha, “A surface patch model for polygonal plates,” IEEE Trans. Antennas Propagat., vol. 30, no. 4, pp. 588-593, July 1982.
[8] E. H. Newman, P. Alexandroupoulos, and E. K. Walton, “Polygonal plate modeling of realistic structures,” IEEE Trans. Antennas Propagat., vol. 32, no. 7, pp. 742-747, July 1984.
[9] D. L. Knepp and J. Goldhirsh, “Numerical analysis of electromagnetic radiation Properties of Smooth Conducting Bodies of Arbitrary Shape,” IEEE Trans. Antennas Propagat., vol. 20, no. 3, pp. 383-388, May 1972.
[10] M. I. Sancer, R. L. McClary, and K. J. Glover, “Electromagnetic computation using parametric geometry,” Electromagnetics, vol. 10, no. 1-2, pp. 85-103, 1990.
[11] D. L. Wilkes and C.-C. Cha, “Method of moments solution with parametric curved triangular patches,” 1991 International IEEE AP-S Symposium Digest, pp. 1512-1515, London, Ontario, Canada, 1991.
[12] S. Wandzura, “Electric current basis functions for curved surfaces,” Electromagnetics, vol. 12, pp. 77-91, 1992.
[13] L. Valle, F. Rivas, and M. F. Cátedra, “Combining the moment method with geometrical modeling by NURBS surfaces and Bézier patches,” IEEE Trans. Antennas Propagat., vol. 42, no. 3, pp. 373-381, March 1994.
[14] G. E. Antilla and N. G. Alexopoulos, “Scattering from complex three-dimensional geometries using a curvilinear hybrid finite-element integral equation approach,” J. Optical Soc. America A, vol. 11, no. 4, pp. 1445-1457, April 1994.
[15] J. M. Song and W. C. Chew, “Moment method solution using parametric geometry,” 1994 International IEEE AP-S Sympoisum Digest, vol. 3, pp. 2242-2245, Seattle, Washington, June 1994.
[16] J. M. Song and W. C. Chew, “Moment method solutions using parametric geometry,” Journal of Electromagnetic Waves and Applications,” vol. 9, no. 1/2, pp.71-83, 1995.
[17] J. M. Song and W. C. Chew, “Fast multipole method solution using parametric geometry,” Microwave and Optical Technology Letters, vol. 7, no. 16, pp. 760-765, Nov. 1994.
[18] D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O.M.AL-Bundak and C.M.Butler, “Potential Integrals for Uniform and linear source distributions on polygonal and polyhedral domains,” IEEE Trans. Antennas Propagat., vol. AP-32, no.3, pp 276-281, March 1984.
[19] L. R. Hamilton, P. A. Macdonald, M. A. Stalzer, R. S. Turley, J. L. Visher and S. M. Wandzura, “3D method of moments scattering computations using the fast multipole method,” IEEE Antennas and Propagation Society International Symposium, AP-S. Digest, vol. 1, pp.435-438, 1994.
[20] J. M. Song and W. C. Chew, “Fast multipole method solution of three dimensional integral equation,” IEEE Antennas and Propagation Society International Symposium, AP-S. Digest, vol. 3, pp. 1528-1531, 1995.
[21] R. P. Penno, G. A. Thiele, and K. M. Pasala, “Scattering from a perfectly conducting cube,” Proceedings of the IEEE, vol. 77, no. 5, pp. 815-823, May 1989.
[22] C.-C. Lu, “Fast algorithms for solving integral equations of electromagnetic wave scattering,” Ph. D Thesis, University of Illinois at Urbana-Champaign, 1995.
[23] M. J. Schuh and A. C. Woo, “The monostatic/bistatic approximation,” IEEE Antennas and Propagation Magazine, vol.36, no.4, pp.76-78 August 1994.
[24] 位元文化,從C++、物件導向到視窗程式設計,文魁資訊,1999。
[25] N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, “The fast multipole method (FMM) for electromagnetic scattering problems,” IEEE Trans. Antennas Propagat., vol. AP-40, no.6, pp. 414-439, June 1992.
[26] C. C. Lu and W. C. Chew, “A fast algorithm for solving hybrid integral equation,” IEEE Proc. Pt. H, vol.140, no.6, pp. 455-460, Dec.1993.
[27] M. Abromowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York,1972.
[28] J. Han and M. Kamber, Data Mining Concepts and Techniques, Morgan Kaufmann, 2001.
[29] R. L. Wagner and W. C. Chew, “A ray-propagation fast multipole algorithm,” Microwave Opt. Tehnol. Lett., vol. 7, no. 10, pp. 435-438, July 1994.
[30] J.-H. Lin, “A study of iterative method on forward and inverse scattering problems,” Ph. D Thesis, University of Illinois at Urbana-Champaign, 1995.
[31] E. Darve, “The fast multipole method: numerical implementation,”Journal of Computational Physics 160, 195-240 (2000).
[32] L. N. Medgynesi-Mitschang, J. M. Putnam, and M. B. Gedera. “Generalized method of moments for three-dimensional penetrable scatterers,” J. Opt. Soc. Am. A., vol.11, no.4, pp1383-1395, April 1994.
[33] J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941.
[34] E. Yip and B. Dembart. “Matrix assembly in FMM-MoM codes,” Tech. Rep. ISSTECH-97-002, The Boeing Company, Seattle, WA, January, 1997.
[35] X. Q. Sheng, Jian-Ming Jin, Jiming Song, W. C. Chew, and Cai-Cheng Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propagat., vol. AP-46, no.11, pp. 1718-1726, Nov 1998.
[36] R. E. Hodges and Y. Rahmat-Samii, “The evalution of MFIE integrals with the use of vector triangle basis functions,” Microwave Opt. Tehnol. Lett., vol. 14, No. 1, pp.9-14, January 1997.
[37] J. M. Song, C. C. Lu, W. C. Chew, and S. W. Lee, “Fast illinois solver code (FISC),” IEEE Antennas and Propagation Magazine, vol. 40, no.3, pp. 27-34, June 1998.
[38] T. B. A. Senior, “Approximate boundary conditions,” IEEE Trans. Antennas Propagat., vol. AP-29, pp. 826-829, 1981.
[39] Ahmed A. Kishk, “Electromagnetic scattering from composite objects using a mixture of exact and impedance boundary conditions,” IEEE Trans. Antennas Propagat., vol. 39, no.6, pp. 826-833, June 1991.
[40] N. A. Logan, “Survey of some early studies of the scattering of plane wave by a sphere,” Proc.IEEE 53, 773-785, 1965.
[41] D. S. Wang and P. W. Barber, “Scattering by inhomogeneous nonspherical objects,” Appl. Opt. 18, 1190-1197, 1979.
[42] P. W. Barber and C.Yeh, “Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies,” Appl. Opt. 14, 2864-2872, 1975.
[43] M. A. Morgan, ed., Finite Element and Finite Difference Methods in Electromagnetic Scattering, Elsevier, Amsterdam, 1990.
[44] A. Taflove and K. R. Umashankar, “Review of FDTD numerical modeling of electromagnetic wave scattering and radar cross-section,” Proc. IEEE 77, 682-699, 1989.
[45] A. Lakhtakia, M. F. Iskander, and C. H. Durney, “An iterative extended boundary condition method for solving the absorption characteristics of lossy dielectric objects of large aspect ratio,” IEEE Trans. Microwave Theory Tech. MTT-31, 640-647, 1983.
[46] R. C. Hansen, ed., Geometric Theory of Diffraction, Institute of Electrical and Electronics Engineers, New York, 1981.
[47] P. Y. Ufimtsev, “Method of edge waves in physical theory of diffraction,” Foreign Tech. Div. Doc. ID FTD-HC-23-259-71, U.S. Air Force Command, Wright-Patterson Air Force Base Ohio, 1971.
[48] L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, pp586-587, 1964.
[49] R. F. Harrington, Field Computation by Moment Methods, ed., Kriedger, Malabar, Fla., 1982.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top