(3.215.183.251) 您好!臺灣時間:2021/04/22 10:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡昇芳
研究生(外文):Cai Sheng-Fang
論文名稱:以細胞分裂頻度法進行寡毛纖毛蟲成長率之研究
論文名稱(外文):Estimating the growth rate of oligotrich ciliates using the frequence of dividing cell
指導教授:蔣國平蔣國平引用關係
指導教授(外文):Chiang Kuo-Ping
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:寡毛類纖毛蟲細胞頻度分析法
相關次數:
  • 被引用被引用:2
  • 點閱點閱:200
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
微小動物性浮游生物相對後生動物而言有較高的新陳代謝速率及成長效率,因此其在能量與碳的循環扮演一個重要的角色。本研究對東海南部與台灣海峽水域間寡毛類纖毛蟲的成長率進行研究,目的在於瞭解寡毛類纖毛蟲在東海南部貧營養鹽水域間食物鏈碳循環體系中碳的傳送量。
本研究利用細胞頻度分析法,觀察細胞正開始分裂與細胞即將分開之階段,求取其時間差值,即Td值。其中本研究海域Strobilidiidae sp. c Td值為2.62小時;而在Strombidiidae sp. a、e及Tontonia sp. a Td值分別為2.59、2.69及8.64小時。將Td值代入公式即可得該種的成長率,Strobilidiidae sp. c為0.55天-1;Strombidiidae sp. a、sp. e及Tontonia sp. a分別為0.68、0.65及0.01天-1。各科經加權平均後即可得知Strobilidiidae的群聚成長率為0.55天-1,而Strombidiidae則為0.50天-1。整體寡毛類纖毛蟲之群聚成長率即為0.52天-1。最後將本研究之成長率代入Chiang et al. (2003)之數據得知,東海陸棚推估有6.5%之基礎生產力會經由寡毛類纖毛蟲向上傳遞。
利用本研究與其他學者的研究數據比較,寡毛類纖毛蟲的成長率似乎主要是受到餌料生物的多寡及種類的影響;也會因為研究的區域寡毛類纖毛蟲的不同,有極大的差異存在。至於溫度對寡毛類纖毛蟲成長率的影響並不是那麼的嚴重。
摘要……………………………………………………………………Ⅰ
目錄……………………………………………………………………Ⅲ
表目錄…………………………………………………………………Ⅴ
圖目錄…………………………………………………………………Ⅵ
1. 前言…………………………………………………………1
1.1 微小動物性浮游生物的生態地位…………………………1
1.2 目前量測纖毛蟲成長率方法的主要………………………2
1.2.1 溫度與體積法………………………………………………2
1.2.2 實驗室培養法………………………………………………2
1.2.3 現場培養法…………………………………………………3
1.2.4 稀釋培養法…………………………………………………4
1.2.5 抑制劑培養法………………………………………………5
1.2.6 細胞頻度分析法……………………………………………5
2. 材料與方法…………………………………………………7
2.1 採樣時間、地點及方式……………………………………7
2.2 固定液的調配………………………………………………7
2.3 採樣頻度……………………………………………………7
2.4 細胞計數與體積量測………………………………………8
2.5 寡毛類纖毛蟲的分類………………………………………8
2.6 寡毛類纖毛蟲細胞分裂階段之判斷………………………9
2.7 細胞頻度分析法……………………………………………9
3. 結果…………………………………………………………14
3.1 種的辨別……………………………………………………14
3.2 Td值…………………………………………………………15
3.3 細胞分裂頻度分析…………………………………………17
4. 討論…………………………………………………………19
4.1 不同種Td之比較……………………………………………19
4.2 成長率………………………………………………………19
4.3 寡毛類纖毛蟲的最大潛在成長率(μmax)…………………20
4.4 溫度體積法之成長率之比較………………………………21
4.5 整體成長率之比較…………………………………………22
參考文獻……………………………………………………………….24
表……………………………………………………………………….33
圖……………………………………………………………………….44
Aelion, C. M., S. W. Chisholm. 1985. Effect of temperature on growth and ingestion rates of Favella sp. Journal of Plankton Research, 7: 821-830.
Antia, A. N., E. J. Carpenter, J. Chang. 1990. Species-specific phytoplankton growth rates via diel DNA synthesis cycles. III. Accuracy of growth rate measurement in the dinoflagellate Prorocentrum minimum. Marine Ecology Progress Series, 63: 273-279.
Azam, F., T., J. G. Fenchel, J. S. Field, L. A. Gray, Meyer-Reil and F. Thingstad. 1983. The ecological role of water column microbes in the sea. Marine Ecology Progress Series, 10: 257-263.
Batten, S. D., E. S. Fileman, E. Halvorsen. 2001. The contribution of microzooplankton to the diet of mesozooplankton in an upwelling filament off the north west coast of Spain. Progress in Oceanography, 51: 385- 398.
Bloem, J., M. B. Bar-Gilissen, and T. E. Cappenberg. 1986. Fixation, counting, and manipulation of heterotrophic nanofalgellates. Appl. Environ. Microbiol, 52: 1266-1272.
Braunwarth, C., and U. Sommer. 1985. Analyses of the in situ growth rates of Cryptophyceae by the use of the use of the mitotic index technique. Limnology and Oceanography, 30: 893-897.
Campbell, L. and E. J. Capenter. 1986. Diel patterns of cell division in marine Synechococcus spp. (Cyanobacteria): use of the frequency of dividing cells technique to measure growth rate. Marine Ecology Progress Series, 32: 139-148.
Carpenter, E. J. and L. Campbell. 1988. Diel patterns of cell division and growth rates of Synechococcus spp. in Long Island sound. Mar. Ecol. Prog. Ser., 47: 179- 173.
Caron, D. A., J. C. Goldman, and M. R. Dennett. 1986. Effects of temperature on growth, respiration, and nutrient regeneration by an omnivorous microflagellate. Appl. Environ. Microbiol, 52: 1340-1347.
Carpenter, E. J., J. Chang. 1988. Species-specific phytoplankton growth rates via diel DNA synthesis cycles. I. Concept of the method. Marine Ecology Progress Series, 43: 105-111.
Carrick, J. H. and G. L. Fahnenstiel. 1992. Growth and production of planktonic protozoa in Lake Michigan: In situ versus in vitro comparisons and importance to food web dynamics. Limnology and Oceanography, 37: 1221-1235.
Chang, J. and E. J. Carpenter. 1988. Species-specific phytoplankton growth rates via diel DNA synthesis cycle. II. DNA quantification and model verification in the dinoflagellate Heterocapsa triquetra. Marine Ecology Progress Series, 44: 287-296.
Chang, J. and E. J. Carpenter. 1990. Species-specific phytoplankton growth rates via diel DNA synthesis cycles. IV. Evaluation of the magnirude of error with computer-simulated cell populations. Marine Ecology Progress Series, 65: 293-304.
Chang, J. and E. J. Carpenter. 1991. Species-specific phytoplankton growth rates via diel DNA synthesis cycle. V. Application to natural population in Long Island Sound. Marine Ecology Progress Series, 78: 115-122.
Chang, J. and H. C. Dam. 1993. The influence of grazing on estimation of phytoplankton growth rates via cell cycle analysis: modeling and experimental evidence. Limnology and Oceanography, 38: 202-212.
Dolan, J. R. 1991. Microphagous ciliates in mesohaline Chesapeake Bay waters: estimates of growth rates and consumption by copepods. Marine Biology, 111: 303-309.
Fahnenstiel, G. L., and D. Scavia. 1987. Dynamics of Lake Michigan phytoplankton: Recent changes in surface and deep communities. Can. J. Fish. Aquat. Sci., 44: 509-514.
Fenchel, T. 1968. The ecology of marine microbenthos. III The reproductive potential of ciliates. Ophelia, 5: 123-136.
Fenchel, T., Finlay, B. J. 1983. Respiration in heterotrophic, free-living protozoa. Mecrob. Ecol., 9: 99-122.
Fileman, E. and P. Burkill. 2001. The herbivorous impact of microzooplankton during two short-term Lagrangian experiments off the NW coast of Galicia in summer 1998. Progress in Oceanography, 51: 361- 383.
Finlay, B. J. 1978. Community production and respiration by ciliated protozoa in the benthos of a small eutrophic loch. Fresh-water Biol., 8: 327-341.
Fuhrman, J. A., and McManus, G. B. 1984. Do bacteria-sized marine eukaryotes consume significant bacterial production? Science, 224: 1257- 1260.
Furnas, M. J. 1990. In situ growth rates of marine phytoplankton: Approaches to measurement, community and species growth rates. Journal of Plankton Research, 12: 1117- 1151.
Gifford, D. J. 1985. Laboratory culture of marine planktonic oligotrichs (Ciliophora, Oligotrichida). Marine Ecology Progress Series, 23: 257-267.
Gilron, G. L., and D. H. Lynn. 1989. Estimates of in situ population growth rates of four tintinnine ciliate species near Kingston Harbour, Jamaica. Estuarine Coastal Shelf Research, 29: 1-10.
Heinbokel, J. F. 1987. Diel periodicities and rates of reproduction in natural populations of tintinnines on the oligotrophic waters off Hawaii, September 1982. Marine Microbial Food Webs, 2: 1-14.
Heinbokel, J. F. 1988. Reproductive rates and periodicities of oceanic tintinnine ciliates. Marine Ecology Progress Series, 47: 239-248.
Jochem, F. 1988. On the distribution and importance of picocyanobacteria in a boreal inshore area (Kiel Bight, Western Baltic). J. Plank. Res., 10: 1009- 1022.
Joiris, C., G. Billen, C. Lancelot, M. H. Daro, J. P. Mommaerts, A. Bertels, M. Bossicart, J. Nijs, J. H. Hecq. 1982. A budget of carbon cycling in the Belgian Coastal zone: relative roles of zooplankton, bacteria and benthos in utilization of primary production. Neth. J. Sea Res., 16: 260-275.
Jumars, P. A. 1993. Concepts in Biological Oceanography. Oxford University Press New York, 179-197.
Lalli M. C. and R. T. Parsons. 1993. Biological Oceanography: An introduction. Pergamon press, Oxford, pp. 301.
Landry, M. R., and Hassett, R. P. 1982. Estimating the grazing impact of marine microzooplankton. Marine Biology, 67: 283- 288.
Landry, M. R., L. W. Haas, and V. L. Fagerness. 1984. Dynamics of microbial plankton communities: Experiments in Kanoehe, Hawaii. Marine Ecology Progress Series, 16: 127-133.
Landry, M. R. 1993. Estimating rates of growth and grazing mortality of phytoplankton by the dilution method. In P. F. Kemp, B. F. Sherr, E. B. Sherr, and J. J. Cole, eds., Current Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL, pp. 715- 722.
Lancelot, C. 1979. Gross excretion rates of natural marine phytoplankton and heterotrophic uptake of excreted products in the southern North Sea as determined by short-term kinetics. Marine Ecology Progress Series, 1: 179-186.
Larsson, U. and A. Hagstrom. 1982. Fractionated phytoplankton primary production, exudates release and bacterial production in a Baltic eutrophication gradient. Marine Biology, 67: 57-70.
Lin, S., J. Chang. and E. J. Carpenter. 1995. Growth characteristic of phytoplankton determined by cell cycle proteins: PCNA immuonostaining of Dunaliella tertoilecta (Chlorophyeae). Journal of Phycology, 31: 388-395.
McDuff R. E., and S. W. Chisholm. 1982. The calculation of in situ growth rates of phytoplankton populations from fractions of cells undergoing mitosis: A clarification. Limnology and Oceanography, 27: 783-788.
Middlebrook, K. H. 1985. Annual production of tintinnid ciliates and the copepods Acartia hudsonica and Eurythemora herdmani in Passamaquoddy Bay, New Brunswick. M. Sc. dissertation, University of Guelph, Gueoph, Ontario.
Middlebrook, K. H., C. W. Emerson, J. C. Roff and D. H. Lynn. 1987. Distribution and abundance of tintinnids in the Quoddy region of Bay of Fundy. Can. J. Zool, 65: 594-601.
Montagnes, D. J. S., D. H. Lynn, J. C. Roff and W. D. Taylor. 1988. The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Marine Biology, 99: 21-30.
Newell, S. Y., Sherr, B. F., Sherr, E. B., and Fallon, R. D. 1983. Bacterial response to presence of eukaryote inhibitors in water from a coastal marine environment. Mar. Environ. Res., 10: 147- 157.
Nival, P., S. Nival. 1976. Particle retention of an herbivorous copepod, Acartia clausi (adult and copepodite stages): Effects on grazing. Limnology and Oceanography, 21: 24-38.
O’Reilly, J. E., D. A. Bush. 1984. Phytoplankton primary production on the northwestern Atlantic shelf. Rapp. P.-v. Reun. Cons. Int. Explor. Mer, 183: 255-268.
Ota, T., A. Taniguchi. 2003. Standing crop of planktonic ciliates in the East China Sea and their potential grazing impact and contribution to nutrient regeneration. Deep-Sea Research II, 50: 423-442.
Pérez, M. T., J. R. Dolan, E. Fukai. 1997. Planktonic oligotrich ciliates in the NW Mediterranean: growth rates and consumption by copepods. Marine Ecology Progress Series, 155: 89- 101.
Rassoulzadegan, F. 1982. Dependence of grazing rate, gross growth efficiency, and food size range on temperature in a pelagic oligotrichous ciliate Lohmanniella spiralis Leeg., fed naturally occurring particulate matter. Ann. Inst. Oceanogr. (paris), 58: 177-184.
Rheinheimer, G. 1984. Bacterial ecology of the North and Baltic Seas. Botanica Marina, 27: 277-299.
Rivier, A., D. C. Brownlee, R. W. Sheldon, and F. Rassoulzadegan. 1985. Growth of microzooplankton: A comparative study of bactivorous zooflagellates and ciliates. Mar. Microb. Food Webs, Paris 1: 51-60.
Robertson, J. R. 1983. Predation by estuarine zooplankton on tintinnid ciliates. Estuarine, Coastal and Shelf Science, 16: 27-36.
Scott, J. M. 1985. The feeding rates and efficiencies of a marine ciliate Strombidium sp., grown under chemostat steady-state conditions. J. exp. Mar. Biol. Ecol., 90: 81-95.
Sherr, B. F., and E. B. Sherr. 1983. Enumeration of heterotrophic microprotozoa by epifluorescence microscopy. Estuarine Coastal Shelf Sci., 16: 1-7.
Sherr, B. F., and Sherr, E. B., Andrew, T. L., Fallon, R. S., and Newell, S. Y. 1986. Trophic interactions between heterotrophic protozoa and bacterioplankton in estuarine water analyzed with selective metabolic inhibitors. Mar. Ecol. Prog. Ser., 32: 169- 179.
Smetacek, V. 1984. Growth dynamics of a common Baltic protozooplankter: the ciliate genus Lohmanniella. Limnologica (Berlin), 15: 371-376.
Song, W., M. Zhu, and Z. Chen. 1999. Updating the systematics of the planktonic oligotrichous ciliates (Ciliophora, Protozoa) with description of ciliature patterns at generic level. The Yellow Sea, 5: 77-85.
Stoecker, D., L. H. Davis, and A. Provan. 1983. Growth of Favella sp. (Ciliata: Tintinnina) and other microzooplankters in cages incubated in situ and comparison to growth in vitro. Marine Biology, 75: 293-302.
Strom, S., T. Morello. 1998. Comparative growth rates and yields of ciliates and heterotrophic dinoflagellates. Journal of Plankton Research, 20: 571- 584.
Swift, E., and E. G. Durbin. 1972. The phased division and cytological characteristics of Pyrocystis spp. can be used to estimate their doubling time in the sea. Deep-Sea Research, 19: 189-198.
Tremaine, S. C., and Mills, A. L. 1987. Tests of critical assumptions of the dilution method for estimating bacterivory by microeucaryotes. Appl. Environ. Microbial., 53: 2914- 2921.
Vaulot, D. 1992. Estimate of phytoplankton division rate by the mitotic index method: The fmax approach revisited. Limnology and Oceanography, 37: 644-649.
Verity, P. 1985. Grazing, respiration, excretion and growth rates of tintinnids. Limnology and Oceanography, 30: 1268-1282.
Verity, P. G. 1986. Growth rates of natural tintinnid populations in Narragansett Bay. Marine Ecology Progress Series, 29: 117-126.
Wang, H., B. Huang, and H. Hong. 1997. Size-fractionated productivity and nutrient dynamics of phytoplankton in subtropical coastal environments. Hydrobiologia, 352: 97-106.
Weiler, C. S. 1980. Population structure and in situ division rates of Ceratium in oligotrophic waters of the North Pacific central gyre. Limnology and Oceanography, 25: 610-619.
谷口 旭 1989. 微小動物性浮游生物存在,生物海洋學─海洋低次生產﹝西澤敏編﹞,恆星社厚生閣,東京,pp. 27-48.
宋微波 王梅 1997. 具溝急游蟲(Strombidium sulcatum)二分裂期間的型態發生學. 自然科學進展,第7卷第1期,pp. 62-65.
宋微波 1999. 原生動物專論,青島海洋大學出版社,青島,pp. 155-176.
李忠憲 2000. 東海原生動物少毛類纖毛蟲現存量、生產量及其對碳循環貢獻之研究. 國立台灣海洋大學漁業科學研究所碩士論文.
馬世潔 2000. 以抑制劑及染色標記法估測骨藻(Skeletonema costatum)之成長率. 國立台灣海洋大學海洋生物研究所碩士論文.
陳琨銘 1995. 對稀釋培養法實驗條件之設定及應用此一方法在野外實測浮游植物的生長率及被捕食率. 國立台灣海洋大學海洋生物研究所碩士論文.
郭敏潔 1999. 藍綠細菌(Synechococcus)東海現存量之時空分布及其在台灣東北部沿岸水域成長率季節變化之研究. 國立台灣海洋大學漁業科學研究所碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔