(3.227.235.183) 您好!臺灣時間:2021/04/14 18:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王誌聰
研究生(外文):Jyh-Tsong Wang
論文名稱:Ti-6Al-4V拉伸行為之缺口效應與有限元素分析
論文名稱(外文):Notch Effect and FEM Analysis of Tensile Behavior in Ti-6Al-4V
指導教授:王星豪
指導教授(外文):Shing-Hoa Wang
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:機械與輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:163
中文關鍵詞:Ti-6Al-4V應變速率缺口效應衝擊韌性有限元素法
外文關鍵詞:Ti-6Al-4Vstrain ratenotch effectimpact toughnessFinite Element Method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Ti-6Al-4V合金廣泛應用在飛機引擎零組件、化學儲槽、深潛裝備、汽車構件及人工關節等,然而這些構件常由於本身製程缺陷或外力因素,使結構產生裂縫或凹槽而加速破壞,造成使用壽命減短,嚴重威脅人員生命財產安全。本研究藉由缺口和平滑圓棒拉伸試驗、Charpy衝擊試驗及有限元素分析方法,分別探討缺口效應對Ti64合金靜態拉伸行為影響、動態負載之Charpy衝擊延性-脆性轉換溫度與製程參數關係及缺口拉伸行為之有限元素應力-應變分析。
結果顯示,Ti64合金在常溫下之缺口抗拉強度比平滑試件抗拉強度高,應變速率的增加使得平滑試件之抗拉強度和降伏強度上升,但伸長量則會下降;缺口試件之抗拉強度和伸長量受應變速率影響趨勢不明顯。Ti64合金之延性-脆性轉換溫度約為163℃,從高溫至低溫的衝擊能量變化範圍廣,在高溫時具有較佳的衝擊韌性。利用有限元素法分析缺口拉伸局部應力,結果為最大應力、最大總應變量和最大塑性應變量均發生在缺口尖端處,三者之值均隨離缺口根部距離漸遠隨之減小。
Two phases (α+β) titanium alloys of Ti-6Al-4V is extensively applied to aeronautics, aerospace, biomedical engineering etc. As the structure components containing the crack and notch defects caused by manufacturing, it will trigger a catastrophic failure of the structure and threaten one’s life and property. To study the effect of notch on the mechanical properties of Ti64 alloy, the approaching methods include the tensile test on smooth and notched bars, Charpy impact test, and Finite Element Method (FEM). Final results show the notch tensile strength (NTS) of notched bar is much larger than the ultimate tensile strength (UTS) of smooth bars. The UTS and yield strengths increased with increasing strain rate but the elongation decreased. However, the strain rate effect on the NTS and the elongation of the notched bar are not evident. This exhibits Ti64 alloys an excellent impact toughness at high temperature and the ductile to brittle transition temperature (DBTT) is about 163℃. FEM analysis successfully predicts the stress, total strain, and plastic strain distribution around the notch tip. The values decreased with increasing distance from the notch root. FEM analysis provides a good methodology of evaluating notch tensile behavior.
第一章 前言-----------------------------------------------1
第二章 文獻回顧-------------------------------------------5
2.1 鈦與鈦合金簡介---------------------------------5
2.2 Ti-6Al-4V合金之冶金特性-----------------------11
2.3 Ti-6Al-4V合金之熱處理與特性-------------------13
2.4 Ti-6Al-4V合金之機械性質與特性-----------------20
2.5 有限元素分析----------------------------------35
第三章 實驗方法與有限元素分析法--------------------------45
3.1 實驗方法--------------------------------------45
3.2 有限元素分析法--------------------------------52
第四章 結果與討論----------------------------------------65
4.1 實驗結果與討論--------------------------------65
4.1.1 金相微觀組織及成分分析----------------------65
4.1.2 硬度試驗------------------------------------71
4.1.3 拉伸實驗結果分析----------------------------73
4.1.4 拉伸破斷面觀察------------------------------80
4.1.5 衝擊實驗結果分析----------------------------88
4.1.6 衝擊破斷面觀察------------------------------91
4.2 有限元素分析結果與討論-----------------------103
4.2.1 平滑拉伸試件之有限元素應力-應變分析--------103
4.2.2 缺口拉伸試驗之有限元素應力-應變分析--------105
4.2.3 Neuber´s理論計算與有限元素解析解比較-------141
4.2.4 有限元素分析之錯誤評估---------------------144
第五章 結論---------------------------------------------152
參考文獻--------------------------------------------------155
[1] 羅騰玉,吳韻聲,「鈦及鈦合金的銲接」,銲接與切割,第12卷,第二期,第28-38頁(2002)。
[2] 盧淑華,「鈦合金業」,華銀月刊,第5卷,第604期,第29-34頁(2001)。
[3] 賴耿陽,金屬鈦-理論與應用,復漢出版社,台南(1990)。
[4] 金重勳,機械材料,復文書局,高雄(1996)。
[5] William F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill, London, pp.433-484(1933).
[6] Hirofumi Yoshimura and Jun Nakahigashi, “Ultra-Fine-Grain Refinement and Superplasticity of Titanium Alloys Obtained Through Protium Treatment”, International Journal of
Hydrogen Energy, Vol.27, No.7-8, pp.769-774(2002).
[7] Nakahigashi J. and Yoshimura H., J. Jpn. Inst. Metals, Vol.26, No.10(2001).
[8] H. Moustahfid, N. GEY, M. Humbert and M.J. Philippe, “Study of the β-α Phase Transformation of a Ti-64 Sheet Induced from a High-Temperature β State and a High-Temperature α+β State”, Metallurgical and Materials Transaction A,
Vol.28A, pp.51-61(1997).
[9] C.F Yloton, F.H. Foroes and R.E. Malone, Metall. Trans.,
Vol.10A, p.132(1979).
[10]R. Boyer, G. Welsch and etc., Materials Properties Handbook-
Titanium Alloys, ASM, Ohio(1994).
[11]Brooks and Charlie R., Heat Treatment, Structure and
Properties of Nonferrous Alloys, ASM, Ohio(1931).
[12]C.S. Smith, Gordon and Breach, The Sorby Centennial Symposium on The History of Metallurgy, New York(1965).
[13]C. Hammond and J. Nutting, Metal Science, Vol.11, p.483(1977).
[14]W.S. Lee and C.F. Lin, “Plastic Deformation and Fracture Behavior of Ti-6Al-4V Alloy Loaded with High Strain Rate under Various Temperature”, Materials Science and
Engineering A, Vol.241, pp.48-59(1998).
[15]Norman E. Dowling, Mechanical Behavior of Materials(Second Edition), Prentice Hall International, Inc., Virginia
(1945).
[16]D.M. Li and A. Bakker, ”Shear Fracture Mechanism in A Rapidly-Solidified Aluminum Scrap Alloy”, Journal of
Materials Science, Vol.32, pp.259-266(1997).
[17]Y. Tomota, J. Nakano, Y. Xia and K. Inoue, “Unusual Strain Rate Dependence of Low Temperature Fracture Behavior in High Nitrogen Bearing Austenitic Steels”, Acta Metallurgica,
Vol.46, No.9, pp.3099-3180(1998).
[18]T.L. Chang, L.W. Tsay, C. Chen, “Influence of Gaseous Hydrogen on The Notched Tensile Strength of D6ac Steel”, Materials Science and Engineering, Vol.316, No.1-2(2001).
[19]G.P. Tiwari, A. Bose, J.K. Chakravartty and etc., “A Study of Internal Hydrogen Embrittlement of Steels”, Vol.286, No.2(2000).
[20]Morten Strandberg, ”Fracture V-Notches with Contained Plasticity”, Engineering Fracture Mechanics, Vol.69, No.3
(2002).
[21]H. Neuber, J. Appl. Mech., Vol.28, p.544(1961).
[22]N.A. Noda, M. Sera and Y. Takase, “Stress Concentration Factors for Round and Flat Test Specimens with Notches”, Int. J. Fatigue, Vol.17, No.3, pp.163-178(1995).
[23]N.A. Noda, Y. Takase and K. Monda, “Stress Concentration Factors for Shoulder Fillets in Round and Flat Bars under Various Loads”, Int. J. Fatigue, Vol.19, No.1, pp.75-84
(1997).
[24]Mauro Filippini, “Stress Gradient Calculations at Notches”, International Journal of Fatigue, Vol.22, No.5(2000).
[25]ASTM Standards, Designation E292-83.
[26]George E. Dieter, Mechanical Metallurgy(SI Metric Edition), McGraw Hill, London(1988).
[27]ASTM Standards, Designation E23-88.
[28]V.J. Colangelo and F.A. Heiser, Analysis of Metallurgical Failures, John Wiley & Sons, Canada(1987).
[29]大南正瑛等人,材料強度破壞學,成璟文化出版社,台北(2000)。
[30]Y. Tomota, Y. Xia and K. Inoue, “Mechanism of Low Temperature Brittle Fracture in High Nitrogen Bearing Austenitic Steels”, Acta. Mater, Vol.46, No.5, pp.1577
-1587(1998).
[31]Lixin Pang and K.S. Kumar, “On The Impact Toughness of Fe-40Al-Based B2 Aluminides”, Intermetallics, Vol.8, No.2 pp.157-163(2000).
[32]S. Hara, T. Abe, M. Enoeda and H. Takatsu, “Effects of Hydrogen Atmosphere on Mechanical Properties and Surface Conditions of A Reduced Activation Ferritic Steels F82H”, Journal of Nuclear Materials, Vol.258-263, No.2, pp.1280
-1284(1998).
[33]林岳正,「API 5L X65鋼及其銲件之低溫何氫脆特性」,碩士論文,國立台灣海洋大學機械所,基隆(1999)。
[34]C. Radhakrishna, J. Raghurami Reddy and K. Prasad Rao, “Fractographic Studies on Charpy Impact Tested Ti6Al4V Weld
Metals”, Prakt. Metallogr., Vol.34, No.6, pp.288-297
(1997).
[35]Wei Zhou and K.G. Chew, “Effect of Welding on Impact Toughness of Butt-Joints in A Titanium Alloy”, Materials Science and Engineering”, Vol.347, No.1-2, pp.180-185
(2003).
[36]J.M. Gomez de Salazar, A. Urena and J.G. Carrion, “Charpy Impact Test of Ti-6Al-4V Joints Diffusion Welded at Low Temperature”, Scripta Meterialia, Vol.35, No.4, pp.479-484(1996).
[37]P.E. Denney and E.A. Metzbower, “Laser Beam Welding of Titanium”, Welding Journal, Vol.68, No.8, pp.342s-346s(1989).
[38]M.T. Todinov, M. Novovic, P. Browen and J.F. Knott, “Modelling The Impact Energy in The Ductile/Brittle Transition Region of C-Mn Multi-Run Welds”, Materials Science and Engineering, Vol.287, No.1, pp.116-124(2000).
[39]E.W. Collings, The Physics Metallurgy of Titanium Alloys, ASM, Ohio(1984).
[40]龔皇光,黃柏文,陳鴻雄,ANSYS與電腦輔助工程分析,全華出版社,台北(2002)。
[41]陳精一,蔡國忠,電腦輔助工程分析-ANSYS使用指南,全華出版社,台北(2000)。
[42]康淵,陳信吉,ANSYS入門,全華出版社,台北(2001)。
[43]S.N. Patanker, J.P. Escobedo and etc., “Superior Super- plastic Behavior in Fine-Grained Ti-6Al-4V Sheet”, Journal of Alloys and Compounds, Vol.345, No.1-2, pp.221-227(2002).
[44]T.W. Kim, ”Heterogeneous Microstructure of Ti-6Al-4V and Its Effect on Superplastic Deformation”, Scripta Materialia, Vol.45, No.8, pp.923-929(2001).
[45]S.H. Wang, M.D. Wei, L.W. Tsay, “Tensile Properties of LBW Welds in Ti-6Al-4V Alloy at Evaluated Temperatures Below 450℃”, Materials Letters, Vol.57, No.12 , pp.1815-1823
(2003).
[46]Derek Hull, Fractography-Observing, Measuring and Interpreting Fracture Surface Topography, Cambridge
University Press, London, UK(1999).
[47]F. Bohner, J.K. Gregory, U. Weber, S. Schmauder, ”Yielding in Notch Tensile Specimens with Graded Microstructures”, Mechanics of Materials, Vol.31, No.10, pp.627-636 (1999).
[48]L. Devillers-Guerville, J. Besson, A. Pineau, “Notch Fracture Toughness of A Cast Duplex Stainless Steel:Modelling of Experiment Scatter and Size Effect”, Nuclear Engineering and Design, Vol.168, No.1-3, pp.211-225(1997).
[49]M.A. Shayandar, A. Kheyroddin and M. S. Mirza, “Element Size Effects in Nonlinear Analysis of Reinforced Concrete Members”, Computers & Structures, Vol.62, No.2, pp.339
-352(1997).
[50]User´s Help Menu of ANSYS 5.7(2001).
[51]Aly El-Domiaty, “The Effect of Strain, Strain Rate and Temperature on Formability of Ti-6Al-4V Alloy”, Journal of Materials Processing Technology, Vol.32, No.1-2, pp.243-251
(1992).
[52]J.H. Keyak and H.B. Skinner, “Three-dimension Finite Element Modelling of Bone:Effects of Element Size”, J. Biomed. Eng., Vol.14, No.1-2(1992).
[53]L.W. Marks and T.N. Gardner, “The Use of Strain Energy as a Convergence Criterion in The Finite Element Modelling of Bone and The Effect of Model Geometry on Stress Convergence”, J. Biomed. Eng., Vol.15, No.1-2(1993).
[54]K. Spencer, S.F. Corbin and D.J. Lloyd, “Notch Fracture Behavior of 5754 Automotive Alloys”, Materials Science and Engineering:A, Vol.332, No.1-2(2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔