跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 20:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃志祥
論文名稱:國小六年級學童四邊形幾何概念的包含關係-從概念心像與概念定義的觀點探討
指導教授:吳昭容吳昭容引用關係
學位類別:碩士
校院名稱:國立台北師範學院
系所名稱:數理教育研究所
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:150
中文關鍵詞:國小六年級四邊形包含關係概念心像概念定義
相關次數:
  • 被引用被引用:19
  • 點閱點閱:539
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
摘 要
本研究主要是利用概念心像和概念定義的互動歷程來探究國小六年級學童對於四邊形幾何概念的瞭解情形。本研究基於欲瞭解學生概念心像和概念定義的互動情形之前,必先瞭解學生擁有怎樣的概念心像和概念定義,因此將研究分成兩個部分。研究一是探究學生對於四邊形幾何概念概念心像和概念定義的瞭解情形,對象為研究者所任教的班級學生共計30人;首先利用自編之測驗進行概念調查,其次再以測驗上所呈現的各類迷思概念為依據,選取12位學生進行個別的訪談,其研究結果作為研究第二部分的重要依據。研究二則是探究學生概念發展過程中概念心像和概念定義的互動方式,對象是自研究一30位學生中立意取樣選取三名學生進行個別晤談,研究資料的分析來源是對三位受訪者訪談錄影帶轉譯和編輯而成的訪談原稿。
研究發現,學生在四邊形幾何圖形的概念心像上普遍有包含性不足的情況,也就是有些圖例被錯誤地排除(如:以為斜擺的正方形是菱形,但不是正方形),此一現象應與學生接觸的通常是典型圖例所致,且會影響更高層次的幾何推理之發展,例如無法理解正方形與菱形的包含關係。另外也有部分概念出現相反的現象,也就是概念心像中混淆了錯誤的圖例在內(如:以為鳶形也是菱形的一種)。對於上述概念心像的問題,研究者嘗試以增加非典型例、特例,或宣告反例的方式處理,發現不只可以修正概念心像,也可以進一步改變概念定義。以Vinner(1991)的問題解決歷程模式圖為參考,研究者也以模式圖說明上述這些修正的歷程。
至於概念定義的部分,學生已經逐漸發展出以圖形特徵加以描述的能力,不過受到語彙能力的影響,對於一些邏輯性的語詞較不易瞭解,因而對於概念產生迷思。學生四邊形幾何圖形概念定義的建立和修正是藉由概念心像來進行,不過概念心像的調整又常常必須藉由概念定義的幫助,但學生對概念心像和概念定義間存在著不一致現象,不一定會覺察,如果被指出時,學生對於概念的詮釋會比較依賴概念心像。
在研究概念心像的瞭解過程中發現,學生透過選圖方式所呈現的答案優於透過繪圖方式所得到的答案,研究者推測這和學生解題思考的歷程有所不同所致,這也可以用研究者的概念發展模式圖加以說明。
Abstract
This study tries to realize grade 6th students’ understanding about quadrilaterals, through the interaction between the concept image and the concept definition. Before we get to the interaction between concept image and the concept definition, first we need to understand what ideas student have about concept image and the concept definition. Therefore, this study will be divided into two parts. First part is to understand what ideas students have on concept image and concept definition regard to quadrilaterals. Research target is 30 students in my class. First, I did a concept test with these students. Then base on the myth that shows on the test result, I’d chose 12 students, and did the individual interview. Base on the content of these individual interviews, move on to part II of this study. The second part of this study is to understand during the development of concept, how the interaction takes place between concept image and the concept definition. 3 target students are chose from the 30 students, and did individual interview. The analysis data for part II study is base on the interview videos of these 3 target students。
Research found, generally speaking, students’ concept image is not fully covered about quadrilaterals. That is to say, some graph is excluded wrongly. For example:students took oblique square is rhombi, not square. This phenomenon probably caused by they see the typical shape all the time, which will impact the development of the higher level reasoning. Say, students might not be able to understand the inclusion relationship between square and rhombi. In addition, some of the concepts show just the opposite phenomenon. That is the concept image mix the mistaken shapes. For example::Students thought kite is part of the rhombi. Regard to above issues, I try to handle them by adding the non-typical types、exceptions, or announce the opposite examples. I found it not only can fix students’ concept image, but also can change their concept definition. Take Vinner’s(1991)problem solving process model graph for reference, I also tries to explain these fixing process with the model graph.
As to the concept definition, students have gradually developing the ability to describe the shapes. However, their language ability is limited, so some logical terms are not easy to be understood to students, and caused some myth. Through the concept image, students build up and fix the concept definition of quadrilaterals; nevertheless, the adjustment of concept image often needs help from the concept definition. However, students might not aware of their concept image and concept definition are not consistent, when point that out students tend to rely on the concept image more.
In the process of study the concept image, I found answer by picking is better than drawing. I assume it has to do with students’ problem solving process, this can also be explain with research’s concept develop model graph.
內 容 目 次
第一章 緒論…… …….…………………...…………………..1
第一節 研究動機與目的………………………………….1
第二節 待答的問題……………………………………….3
第二章 文獻探討………………..………..…...………………4
第一節 學童幾何概念之理論…………………………….4
第二節 概念心像和概念定義之探究..………………….19
第三節 定義和圖例間不一致性的探討………………...27
第四節 國小學生幾何圖形概念的探究………………...32
第三章 研究一:幾何概念知識的調查…………….……….40
第一節 研究對象……………….………………………..40
第二節 研究工具………………………………………...40
第三節 實施步驟………………………………………...44
第四節 結果與討論……………………………………...45
第四章 研究二:個案的研究……………………….……….56
第一節 受試者………………………………………...…57
第二節 訪談問題與程序……………………...…………57
第三節 訪談的實施及反思記錄………………………...60
第四節 資料的整理與分析……………………………...61
第五節 結果與討論……………………………………...61
第五章 結論與建議…………………………………..….…95
第一節 結論……………………………………………...95
第二節 建議…………………………………………….105
參考文獻…………………………………………………….108
附錄一………………………………………….………...….116
附錄二……………………………………………………….123
附錄三……………………………………………………….124
一、 中文部份
王文科(民78)兒童的認知發展導論。台北:文景。
王文科(民80)認知發展理論和教育-皮亞傑理論的應用。台北:五南。
何森豪(民88)Van Hiele幾何發展水準之量化模式-以國小中高年級學 生在四邊形概念之表現為例。國立台中師範學院國民教育研究所碩士論文。
沈佩芳(民91)國小高年級學童的平面幾何圖形概念之探討。國立台北師範學院數理教育研究所碩士論文。
吳貞祥(民62)新數學圖形教學。國民小學教師科學教育小叢書,板橋:台灣省國民學校教師研習會。
吳貞祥(民69)國民教育科學教學資料叢書:國民小學數學教學的基礎-數、量、形(國立教育資料館主編)。台北:幼獅。
吳慧真(民86)幾何證明探究教學之研究。國立台灣師範大學數學研究所數學教育組碩士論文。
吳德邦、謝翠玲(民87)根據Van Hiele 理論來探討國小數學實驗課程之幾何教材。台中師院數理學報,20-61頁。
吳德邦(民87)國中生Van Hiele幾何思考層次之研究。行政院國家科學委員會專題研究計劃成果報告,NSC 87-2511-S-142-003
林碧珍(民82)兒童「相似性」概念發展之研究-長方形。新竹師院學報,6期,333-378。
林軍治(民81)兒童幾何概念思考之Van Hiele 水準分析研究--VHL、城鄉、年級、認知形式與幾何概念及錯誤概念之關係。台中:書垣。
教育部(民89)國民中小學九年一貫課程暫行綱要-數學學習領域。教育部。
陳俊生(民65)國民教育科學教學資料叢書:幾何圖形的認識,國立教育資料館館主編。台北:幼獅。
張景媛(民84)國中生建構幾何概念概念之研究暨統整式合作學習的幾何教學策略效果之評估。國立台灣師範大學教育心理與輔導學系教育心理學報,28期,99-144頁。
張英傑(民90)兒童幾何形體概念之初步探究。國立台北師範學院學報,14期,491-528頁。
劉 好(民85)角的課程設計理念。國教輔導,第35卷第5期, 34-41頁。
劉 好(民87)平面圖形教材之處理。台灣省國民學校教師研習會編印,頁195-196。
劉湘川、劉好、許天維(民82)我國國小學童對稱概念的發展研究。行政院國家科學委員會專題研究計畫成果報告,NSC-82-0111-S-142-001。
鄭昭明(民82)認知心理學:理論與實踐。台北:桂冠。
譚寧君(民82)兒童的幾何觀:從Vin Hiele幾何思考的發展模式談起。國民教育,33(5/6),頁12-17。
盧銘法(民85)國小中高年級幾何概念之分析研究-以Vin Hiele幾何思考水準與試題關聯結構分析為探討基礎。國立台中師範學院國民教育研究所碩士論文。
劉秋木(民85)國小數學科教學研究。台北:五南。
蘇英奇(民61)圖形概念形成的調查與分析。台中師專學報,2期,229-262。
Gredler, M.(民88)Learning and instruction theory into practice(吳幸宜譯)。台北:心理。
Solso, R.(民81)Cognitive psychology(黃希庭等譯)。台北:五南。
二、 英文部份
Anderson, J. R.(1990).Cognitive psychology and its implications(3rd ed.).New York:Freeman.
Burger, W. F., & Shaughnessy, J. M.(1986).Characterizing the van Hiele lever of development in geometry. Journal for Research in Mathematics Education, 17(1),p31-48.
Crowley, M. L.(1987).The van Hiele model of the development of geometric thought. In M. M. Lindquist & A. P. Shulte(Eds.), Learning and teaching geometry K-12. Reston, VA:National council of teachers of mathematics,1-16.
Clement, D. H., & Battista, M. T.(1989). Learning of geometry concepts in a logo enviroment. Jounal for Research in Mathematics Education. 20. p450-467.
Clement, D. H., & Battista, M. T.(1992).Geometry and spatial reasoning. In Grouws, D.A.(Eds.)Handbook of research on mathematics teaching and learning. N.Y.:Macmillan .
de Villiers, M.(1994).The role and function of a hierarchical classification of quadrilaterals. For the learning of mathematics, 14(1), p11-18.
Duval, R.(1995).Geometrical pictures:Kinds of representation and special processings. Exploiting mental imagery with computers in mathematics education;p142-157.
Freudenthal, H.(1973).Mathematics as an educational task. Dordrecht, The Netherlands:Reidel.
Fuy, D., & Geddes, D.(1984).An investigation of van Hiele levels of thinking in geometry among sixth and ninth graders:Research findings and implications. Paper presented at the American educational research association meeting in New Orleans, LA.(ERIC Document Reproduction Service No. ED 245 934)
Fuy, D., Geddes, D., & Tischler, R.(1988)The van Hiele model of thinking in geometry among adolescents. Reston, VA:National Counil of Teachers of Mathematics.
Gutierrez, A., & Jaime, A.(1999).Preservice primary teachers’ understanding of the concept of altitude of a triangle. Journal of Mathematics Teacher Education 2:p253-275.
Han, T.(1986).The effect on achievement and attitude of a standard geometry textbook and a textbook consistent with the van Hiele theory. Unpublished doctoral dissertation, University of Iowa.
Hershkowitz, R.(1990).Psychological aspects of learning geometry. In P. Nesher & J.Kilpatrick(Eds.),Mathematics and cognition(pp.70-95).New York:Cambridge University Press.
Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert(ed.), Conceptual and procedural knowledge: The case of mathematics. Hillsdale, NJ: LEA.
Hoffer, A. R.(1983).van Hiele-based research. In R. Lesh & M. Landau (Eds.), Acquistion of mathematics concepts and processes. New York, NY:Academic Press.
Matsuo, Y. N.(2000).States of understanding relations among concepts of geometric figures: Considered from the aspect of concept image and concept definition. Proceedings of the conference of the international group for the psychology of mathematics education (PME) (24th, Hiroshima, Japan, July 23-27, 2000), Volume 3.
Matsuo, Y. N.(1993).Students’ understanding geometrical figures in transition fromvan Hiele level 1 to 2. Proceedings of the conference of the international group for the psychology of mathematics education (PME), 17th,2, p113-120
National Council of Teachers of Mathematics(2000).Principles and standard for teaching mathematics. Reston,VA:NCTM.
Pegg, J., & Baker, P.(1999).An exploration of the interface between van Hiele’s level 1 and 2. Proceedings of the conference of the international group for the psychology of mathematics education (PME), 23th, 4, p25-32.
Piaget, J.,&Inhelder, B.(1967).The child’s conception of space. New York:W.W.Norton & Co.
Schoenfeld, A. H. (1986). On having and using geometric knowledge. In J. Hiebert(ed.), Conceptual and procedural knowledge: The case of mathematics. Hillsdale, NJ: LEA.
Tall, D., & Vinner, S.(1981).Concept images and concept definition in mathematics with particular reference to limits and continuity. Educational studies in mathematics, 12, p151-169.
Usiskin, Z. P.(1982).Van Hiele levels and achievement in secondary school geometry (Final report of the cognitive development and achievement in secondary school geometry project). Chicago, IL: University of Chicago, Department of Education.(ERIC Document reproduction service No. ED 220 288)
Usiskin, Z. P.(1987).Resolving the continuing dilemmas in school geometry. In M. M. Lindquist & A. P. Shulte(Eds.), Learning and teaching geometry K-12. Reston, VA:National council of teachers of mathematics, p17-31.
Van Hiele, P. M.(1986).Structure and insight:A method of mathematics education. Orlando, FL:Academic Press. Vigilante, N. J.(1967). Geometry for Primary Children:Considerations. The arithmetic teacher. 14. p453-459.
Vinner, S.(1991).The role of defintitions in the teaching and learning of mathematics. In D. Tall(Ed.),Advanced mathematical thinking(pp. 65-81). Netherlands:Kluwer academic publishers.
Vinner, S.(1983).Concept definition, concept Image and the notion of function. Internation Journal of Mathematics Education in Science and Technology, 14, p293-305.
Wilson, P. S.(1986a).The relationship between children’s definitions of rectangles and their choices of examples. In G. Lappan & R.Evans(Eds.),Proceedings of the eighth annual meeting of the North American chapter of the international group for the psychology of mathematics education(pp.158-162).East Lansing, MI.
Wilson, P. S.(1986b).The role of negative instances in geometric feature identification task. Journal for Research in Mathematics Education, 17, p130-139.
Wilson, P. S.(1990).Inconsistent ideas related to definition and examples. Focus on learning problems in mathematics;12,n3-4,p31─47.
Wirszup, I.(1976).Breakthroughs in the psychology of learning and teaching geometry. In J. L. Martin & D. A. Bradbaard(Eds.),Space and geometry.(ERIC Document Reproduction Service No. ED 132 033)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top