一、 中文部份
王文科(民78)兒童的認知發展導論。台北:文景。
王文科(民80)認知發展理論和教育-皮亞傑理論的應用。台北:五南。
何森豪(民88)Van Hiele幾何發展水準之量化模式-以國小中高年級學 生在四邊形概念之表現為例。國立台中師範學院國民教育研究所碩士論文。沈佩芳(民91)國小高年級學童的平面幾何圖形概念之探討。國立台北師範學院數理教育研究所碩士論文。吳貞祥(民62)新數學圖形教學。國民小學教師科學教育小叢書,板橋:台灣省國民學校教師研習會。
吳貞祥(民69)國民教育科學教學資料叢書:國民小學數學教學的基礎-數、量、形(國立教育資料館主編)。台北:幼獅。
吳慧真(民86)幾何證明探究教學之研究。國立台灣師範大學數學研究所數學教育組碩士論文。吳德邦、謝翠玲(民87)根據Van Hiele 理論來探討國小數學實驗課程之幾何教材。台中師院數理學報,20-61頁。
吳德邦(民87)國中生Van Hiele幾何思考層次之研究。行政院國家科學委員會專題研究計劃成果報告,NSC 87-2511-S-142-003
林碧珍(民82)兒童「相似性」概念發展之研究-長方形。新竹師院學報,6期,333-378。林軍治(民81)兒童幾何概念思考之Van Hiele 水準分析研究--VHL、城鄉、年級、認知形式與幾何概念及錯誤概念之關係。台中:書垣。
教育部(民89)國民中小學九年一貫課程暫行綱要-數學學習領域。教育部。
陳俊生(民65)國民教育科學教學資料叢書:幾何圖形的認識,國立教育資料館館主編。台北:幼獅。
張景媛(民84)國中生建構幾何概念概念之研究暨統整式合作學習的幾何教學策略效果之評估。國立台灣師範大學教育心理與輔導學系教育心理學報,28期,99-144頁。張英傑(民90)兒童幾何形體概念之初步探究。國立台北師範學院學報,14期,491-528頁。
劉 好(民85)角的課程設計理念。國教輔導,第35卷第5期, 34-41頁。
劉 好(民87)平面圖形教材之處理。台灣省國民學校教師研習會編印,頁195-196。
劉湘川、劉好、許天維(民82)我國國小學童對稱概念的發展研究。行政院國家科學委員會專題研究計畫成果報告,NSC-82-0111-S-142-001。
鄭昭明(民82)認知心理學:理論與實踐。台北:桂冠。
譚寧君(民82)兒童的幾何觀:從Vin Hiele幾何思考的發展模式談起。國民教育,33(5/6),頁12-17。盧銘法(民85)國小中高年級幾何概念之分析研究-以Vin Hiele幾何思考水準與試題關聯結構分析為探討基礎。國立台中師範學院國民教育研究所碩士論文。劉秋木(民85)國小數學科教學研究。台北:五南。
蘇英奇(民61)圖形概念形成的調查與分析。台中師專學報,2期,229-262。
Gredler, M.(民88)Learning and instruction theory into practice(吳幸宜譯)。台北:心理。
Solso, R.(民81)Cognitive psychology(黃希庭等譯)。台北:五南。
二、 英文部份
Anderson, J. R.(1990).Cognitive psychology and its implications(3rd ed.).New York:Freeman.
Burger, W. F., & Shaughnessy, J. M.(1986).Characterizing the van Hiele lever of development in geometry. Journal for Research in Mathematics Education, 17(1),p31-48.
Crowley, M. L.(1987).The van Hiele model of the development of geometric thought. In M. M. Lindquist & A. P. Shulte(Eds.), Learning and teaching geometry K-12. Reston, VA:National council of teachers of mathematics,1-16.
Clement, D. H., & Battista, M. T.(1989). Learning of geometry concepts in a logo enviroment. Jounal for Research in Mathematics Education. 20. p450-467.
Clement, D. H., & Battista, M. T.(1992).Geometry and spatial reasoning. In Grouws, D.A.(Eds.)Handbook of research on mathematics teaching and learning. N.Y.:Macmillan .
de Villiers, M.(1994).The role and function of a hierarchical classification of quadrilaterals. For the learning of mathematics, 14(1), p11-18.
Duval, R.(1995).Geometrical pictures:Kinds of representation and special processings. Exploiting mental imagery with computers in mathematics education;p142-157.
Freudenthal, H.(1973).Mathematics as an educational task. Dordrecht, The Netherlands:Reidel.
Fuy, D., & Geddes, D.(1984).An investigation of van Hiele levels of thinking in geometry among sixth and ninth graders:Research findings and implications. Paper presented at the American educational research association meeting in New Orleans, LA.(ERIC Document Reproduction Service No. ED 245 934)
Fuy, D., Geddes, D., & Tischler, R.(1988)The van Hiele model of thinking in geometry among adolescents. Reston, VA:National Counil of Teachers of Mathematics.
Gutierrez, A., & Jaime, A.(1999).Preservice primary teachers’ understanding of the concept of altitude of a triangle. Journal of Mathematics Teacher Education 2:p253-275.
Han, T.(1986).The effect on achievement and attitude of a standard geometry textbook and a textbook consistent with the van Hiele theory. Unpublished doctoral dissertation, University of Iowa.
Hershkowitz, R.(1990).Psychological aspects of learning geometry. In P. Nesher & J.Kilpatrick(Eds.),Mathematics and cognition(pp.70-95).New York:Cambridge University Press.
Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert(ed.), Conceptual and procedural knowledge: The case of mathematics. Hillsdale, NJ: LEA.
Hoffer, A. R.(1983).van Hiele-based research. In R. Lesh & M. Landau (Eds.), Acquistion of mathematics concepts and processes. New York, NY:Academic Press.
Matsuo, Y. N.(2000).States of understanding relations among concepts of geometric figures: Considered from the aspect of concept image and concept definition. Proceedings of the conference of the international group for the psychology of mathematics education (PME) (24th, Hiroshima, Japan, July 23-27, 2000), Volume 3.
Matsuo, Y. N.(1993).Students’ understanding geometrical figures in transition fromvan Hiele level 1 to 2. Proceedings of the conference of the international group for the psychology of mathematics education (PME), 17th,2, p113-120
National Council of Teachers of Mathematics(2000).Principles and standard for teaching mathematics. Reston,VA:NCTM.
Pegg, J., & Baker, P.(1999).An exploration of the interface between van Hiele’s level 1 and 2. Proceedings of the conference of the international group for the psychology of mathematics education (PME), 23th, 4, p25-32.
Piaget, J.,&Inhelder, B.(1967).The child’s conception of space. New York:W.W.Norton & Co.
Schoenfeld, A. H. (1986). On having and using geometric knowledge. In J. Hiebert(ed.), Conceptual and procedural knowledge: The case of mathematics. Hillsdale, NJ: LEA.
Tall, D., & Vinner, S.(1981).Concept images and concept definition in mathematics with particular reference to limits and continuity. Educational studies in mathematics, 12, p151-169.
Usiskin, Z. P.(1982).Van Hiele levels and achievement in secondary school geometry (Final report of the cognitive development and achievement in secondary school geometry project). Chicago, IL: University of Chicago, Department of Education.(ERIC Document reproduction service No. ED 220 288)
Usiskin, Z. P.(1987).Resolving the continuing dilemmas in school geometry. In M. M. Lindquist & A. P. Shulte(Eds.), Learning and teaching geometry K-12. Reston, VA:National council of teachers of mathematics, p17-31.
Van Hiele, P. M.(1986).Structure and insight:A method of mathematics education. Orlando, FL:Academic Press. Vigilante, N. J.(1967). Geometry for Primary Children:Considerations. The arithmetic teacher. 14. p453-459.
Vinner, S.(1991).The role of defintitions in the teaching and learning of mathematics. In D. Tall(Ed.),Advanced mathematical thinking(pp. 65-81). Netherlands:Kluwer academic publishers.
Vinner, S.(1983).Concept definition, concept Image and the notion of function. Internation Journal of Mathematics Education in Science and Technology, 14, p293-305.
Wilson, P. S.(1986a).The relationship between children’s definitions of rectangles and their choices of examples. In G. Lappan & R.Evans(Eds.),Proceedings of the eighth annual meeting of the North American chapter of the international group for the psychology of mathematics education(pp.158-162).East Lansing, MI.
Wilson, P. S.(1986b).The role of negative instances in geometric feature identification task. Journal for Research in Mathematics Education, 17, p130-139.
Wilson, P. S.(1990).Inconsistent ideas related to definition and examples. Focus on learning problems in mathematics;12,n3-4,p31─47.
Wirszup, I.(1976).Breakthroughs in the psychology of learning and teaching geometry. In J. L. Martin & D. A. Bradbaard(Eds.),Space and geometry.(ERIC Document Reproduction Service No. ED 132 033)