|
References [1] Karageorghis, A. and Fairweather, G., “The method of fundamental solutions for the numerical solution of the biharmonic equation”, Journal of Computational Physics, pp. 434-459, 1986. [2] Karageorghis, A. and Fairweather, G., “The almansi method of fundamental solution for solving biharmonic problems”, international Journal for Numerical Methods in Engineering, Vol. 26, pp. 1665-1682, 1988. [3] Karageorghis, A. and Fairweather, G.,”The simple layer potential method of fundamental solutions for certain biharmonic problems”, International Journal for Numerical Methods in Fluids, Vol. 9, pp. 1221-1234, 1989. [4] Karageorghis, A., “Modified methods of fundamental solutions for harmonic and biharmonic problems with boundary singularities”, Numerical Methods for Partial Differential Equations, vol. 8, pp. 1-19, 1992. [5] Lin, T. W. and Lin, C. H., “Numerical methods and programs.”, Graphics and Literature Boos Publisher. Taipri, Taiwan, 1997. (In Chinese) [6] Chiu, C. L., “Non-singular boundary integral equation for the analysis of the electromagnetic problems.”, MS Thesis, National Taiwan University, Taipei, Taiwan, 2002. [7] Tasi, C. C., “Meshless Numerical Methods and their Engineering Applications.”, Ph D Dissertation, National Taiwan University, Taipei, Taiwan, 2002. [8] Lee, Y.T., Chen, I.L., Chen, K.H., and Chen, J.T., “A new meshless method for free vibration analysis of plates using radial basis function”, The 26th National Conference on Theoretical and Applied Mechanics, 2002. [9] Nardini, D. and Breebia, C.A., “A new approach to free vibration analysis using boundary elements”, Boundary Element Methods in Engineering, Springer-Verlag, pp. 312-326, 1982. [10] Cheng, A.H.-D, Young, D.L., and Tsai, C.C., “Solution of Poisson’s equation by iterative DRBEM using compactly supported, positive definite radial basis function”, Engineering Analysis with Boundary Elements, 24, pp. 549-557, 2000. [11] Young, D.L., Tsai, C.C., Eldho, T.I., and Cheng, A.H.-D., “Solution of Stokes flow using an iterative DRBEM based on compactly-supported, positive-definite radial basis function”, Computers and Mathematics with Applications, 43, pp. 607-619, 2002. [12] Tsai, C.C., Young, D.L., and Cheng, A.H.-D., “An iterative DRBEM for three-dimensional Poisson’s Equation”, Boundary Element Technology, XIV, WIT Press, pp. 323-332, 2000. [13] Trefftz, “E. Ein Gegenstuck zum Ritzchen Verharen”, Proceeding of 2nd Int. Cong. Appl. Mech., Zurich, pp. 131-137, 1926. [14] Golberg, M.A., “The method of fundamental solutions for Poisson’s equation”, Engineering Analysis with Boundary Elements, vol. 16, pp. 205-213, 1995. [15] Li, J., ”Mathematical justification for RBF-MFS”, Engineering Analysis with Boundary Elements, vol. 25, pp. 897-901, 2001. [16],Tsai, C.C., Young, D.L., and Cheng, A.H.-D, “Meshless BEM for steady three-dimensional Stokes Flows”, Proceedings of International Conference on Computational Engineering & Sciences, Tech. Science Press , 2001. [17],Tsai, C.C., Young, D.L., and Cheng, A.H.-D, “Meshless BEM for three-dimensional Stokes Flows”, Computer Modeling in Engineering & Sciences, 3(1), pp. 117-128, 2002. [18] Jaswon, M. A., Maiti, M. and Symm, “Numerical Biharmonic analysis and some applications.”, G. T., International Journal of Solids and Structures, vol. 3, pp. 309, 1967. [19] Jaswon, M. A. and Maiti, M., “An integral equation formulation of plate bending problems.”, Journal of Engineering Mathematics, vol. 2, pp. 83-89 , 1968. [20] Maiti, M. and Chakrabarti, S. K., International Journal of Engineering Science, vol. 12, pp. 793, 1974. [21] Leissa, A.W., ”Vibration of Plates”, NASA SP-160, 1969. [22] Murashima, S., Nonaka, Y., and Nieda, H., in Boundary Elements, Proceeding of the Fifth International Confererence, Hiroshima, Japan, 1983, edited by C. A. Brebbia, T. Futagami, and M. Tanaka (Springer-Verlag, New York), pp. 75 , 1983. [23] Burgess G. and Mahajerin, E., “Rotational Fluid Flow Using a Least Squares Colloctaion Technique.”, Computers & Fluids , vol. 12, pp. 311, 1984. [24] Lo D. J., “Two-dimensional Velocity-vorticity Formulation for Incompressible Flows with Free Surfaces by the Finite Element Method.”, MS Thesis, National Taiwan University, Taipei, Taiwan, 2000. [25] Burggraf, O.R , “Analytic and Numerical Studies of Structure of Steady Separated Flow”, J. Fluid Mech. ,vol. 24, pp. 113-151, 1966. [26] Hwu, T.Y., Young, D. L., and Chen, Y. Y., “Chaotic Advections for Stokes Flows in Circular Cavity.”, Journal of Engineering Mechanics, pp. 774-882, 1997. [27] Chen, C.S., Golberg, M.A., Ganesh, M., and Cheng, A.H.-D., “Multilevel compact radial functions based computational schemes for some elliptic problems”, Journal of Computers and Mathematics with Application, 43, pp. 359-378, 2002. [28] Li, X., Ho, C.H., and Chen, C.S., “Computational test of approximation of functions and their derivatives by radial basis functions”, to appear in Neural, Parallel and Scientific Computations, 2002. [29] Nardini, D., and Breebia, C.A., “A new approach to free vibration analysis using boundary elements”, Boundary Element Methods in Engineering, Springer-Verlag, pp. 312-326, 1982 [30] Balakrishnan, K., and Ramachandrn, P.A., “A particular solution Trefftz method for non-linear Poisson problems in heat and mass transfer”, Journal of Computational Physics, vol. 150, pp. 239-267, 1999. [31] Berbbia, C. A., Topics in Boundary Element Research, Vol. 6, Electromagnetic Applications, Springer-Verlag, 1989. [32] Press, W. H., Teukolsky, S. A., and Vetterling, W. T., and Flannery, B. P., Numerical recipes in Fortran, ed., Cambridge, 1992. [33] Chen, J.T., Chen, I.L., Chen, K.H., Lee, Y.T., and Yeh, Y.T., ”A meshless method for free vibration analysis of circular and rectangular clamped plates using radial basis function.”, Engineering Analysis with Boundary Elements, 5 April 2003. [34] Kitahara, M., “Boundary Integral Equation Methods in Eigenvalue problems of Elastodynamics and Thin Plates”, Amsterdam, Elsevier, 1985. [35] Pozrikidis, C., “Boundary integral and singularity methods for linearized viscous flow.”, Cambridge university press, 1992. [36] Kythe, P. K. “Fundamental solution for differential operators and applications.”, Boston: Birkhauser, 1996. [37] Wong, G.K.K. and Hutchinson, J.R. ; An improved boundary element method for plate vibrations, Boundary Element Methods, Ed. Brebbia, C.A., Springer-verlag, Berlin, pp. 272-289, 1981 (Proc. 3rd International Seminar, Irvine, California, 1981).
|