(3.238.250.105) 您好!臺灣時間:2021/04/20 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴榮毅
研究生(外文):JungYi Lai
論文名稱:土釘模型邊坡動態反應模擬
指導教授:陳榮河陳榮河引用關係
指導教授(外文):RongHer Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:110
中文關鍵詞:土釘振動台試驗位移反應尖峰加速度
外文關鍵詞:soil nailingshaking table model testsdisplacement reactionpeak acceleration
相關次數:
  • 被引用被引用:10
  • 點閱點閱:361
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
土釘工法因施工方便及成本便宜,已被國人引用在邊坡加勁及基礎開挖。前人對於土釘加勁之機制做過研究,包括模型試驗、現地觀察,以及數值分析等。
本研究使用有限差分法針對土釘模型砂箱模擬振動台試驗結果進行數值模擬,以瞭解土釘之動態機制。使用之程式為FLAC有限差分軟體,牆體假設為二維之平面應變狀況。建立數值模型時,先於底部以0.5Hz∼100Hz之諧和水平向正弦速度波輸入,觀察其於數值模型牆頂放大情形,以決定系統之最小自然頻率。實際進行數值模擬時,震波的輸入依據國家地震中心於振動台試驗時所紀錄之加速度歷時。
數值分析結果顯示,當輸入之震波尖峰加速度值在600gal以下時,分析結果可適當反應模型砂箱振動台試驗的位移反應,尖峰加速度值約在600gal以上時,因為模型邊坡已瀕臨破壞,故每一階段振動之位移增量迅速增加,造成模擬上較大的誤差。
大致而言,數值模擬結果呈現牆頂位移最大、牆趾位移偏小的趨勢,約在邊坡高程300mm處以下之牆面位移較為保守,牆面高程在300mm以上時,由於邊坡之慣性力較大而造成牆面位移有越往上方越大的情形。另外,由邊坡位移反應得知邊坡在接近破壞時,在受到相同震度的情形下所增加的位移相近。
比較數值分析結果與試驗結果行為之不同處,發現邊界效應、砂土沈陷、側壁摩擦等方面,使用數值方法無法確實模擬,此為將來研究之課題。
Because of the convenience of construction and low cost, the method of soil nailing is widely applied to slope reinforcement and foundation excavations. The mechanism of soil nailing is studied in the ways of model tests, in-situ observations, and numerical analyses.
In this research, FDM is applied to construct numerical analyses to soil nailing model tests performed on the shaking table. The FDM program FLAC is used, and the numerical model is assumed under the plane strain condition. While setting up the numerical model, horizontal harmonic sinusoidal velocity waves with frequency range from 0.5Hz to 100 Hz are applied at first to make the condition of wave amplification observed to have the minimum system frequency decided. The acceleration history input to the numerical model is based on the acceleration history of the shaking table model tests recorded by the NCREE during model tests.
Results of numerical analyses shows that when seismic waves with peak acceleration below 600gal are input, the numerical model can adequately represent the displacement reaction of the shaking table model; when the input seismic waves with their peak acceleration exceed 600gal, the displacement increment rapidly increases at each step because of the slope bordering on failure.
Compare the difference between the results of the numerical analyses and shaking table model tests, and the author find that the boundary effect, settlement of sand, and lateral friction are the aspects that the numerical analyses can’t fit well with the shaking table model tests.
誌謝 I
摘要 III
Abstract IV
目錄 V
圖目錄 IX
表目錄 XIV
符號說明 XV
第一章 緒論 1
1.1研究動機 1
1.2研究目的與方法 1
1.3研究內容 2
第二章 文獻回顧 5
2.1土釘結構物之破壞模式與變形行為 5
2.2土釘與傳統加勁結構之縮尺試驗 6
2.3強震作用下擋土牆破壞機制 7
2.4土釘結構物穩定分析方法 8
2.4.1Davis法 8
2.4.2德國法 10
2.4.3法國法 10
2.5加勁擋土結構數值分析 11
第三章 土釘加勁擋土牆振動台試驗 21
3.1振動台試驗設備介紹 21
3.2土釘砂箱模型與原型邊坡動態相似性分析 22
3.3土釘模型邊坡試驗之配置 26
3.4土釘模型試驗之結果 27
3.4.1土釘傾角之影響 28
3.4.2土釘長度之影響 29
3.4.3邊坡坡度之影響 29
3.4.4振動頻率之影響 29
第四章 數值分析軟體介紹與分析模式之建立 41
4.1 FLAC程式初步介紹 42
4.2 FLAC內建土壤組成律模式介紹 43
4.2.1彈性材料模式 43
4.2.2橫向等向模式 43
4.2.3莫爾─庫侖材料模式 43
4.2.4零效模式 44
4.3 FLAC界面元素介紹 44
4.4結構元素介紹 45
4.4.1梁元素 45
4.4.2二力桿件元素 46
4.5分析模式之建立 46
4.5.1土壤元素模擬 47
4.5.2土釘與面版之模擬 49
4.5.3邊界效應 50
4.5.4動態反應模式 51
第五章 數值分析驗證及結果討論 68
5.1數值模型之驗證 68
5.2振動台試驗模擬結果 69
5.2.1坡面之側向變形 70
5.2.2坡頂沈陷量 72
5.2.3動態作用下土壤元素降伏情形 72
5.2.4動態土壓力隨時間變化情形 73
5.2.5土釘軸力隨時間變化情形 73
5.3改良邊界效應之模擬分析 75
第六章 結論與建議 102
6.1結論 102
6.2建議 104
參考文獻 105
1. 洪勇善(1999),「土釘擋土結構之力學行為」,博士論文,國立台灣大學土木工程學研究所,台北。
2. 陳建仁(2002),「土釘加勁邊坡之耐震研究」,碩士論文,國立台灣大學土木工程學研究所,台北。
3. 蘇玉峰(2001),「土釘擋土牆設計參數研析」,碩士論文,國立台灣大學土木工程學研究所,台北。
4. 林世偉(2001),「地工格網加勁擋土牆動態行為之數值分析」,碩士論文,國立台灣大學土木工程學研究所,台北。
5. 陳宏杰(2000),「土釘擋土結構之力學行為」,碩士論文,國立台灣大學土木工程學研究所,台北。
6. 何嘉浚(1996),「土釘擋土結構設計方法之探討」,碩士論文,國立台灣大學土木工程學研究所,台北。
7. 陳榮河、洪勇善、蘇玉峰、葉國杰(2001),「土釘加勁邊坡力學行為分析」,地震衍生之邊坡破壞行為及防治對策研究(II)論文集,台北,第111 - 136頁。
8. 李維峰、洪勇善(2001),「加勁邊坡之電腦輔助設計」,大地工程電腦軟體應用研討會論文。
9. 李維峰、黃亦敏(2001),「加勁擋土牆動態設計與研發」,地工技術第85期,第13-24頁。
10. 國家地震工程研究中心(2000),「921集集大地震─大地工程震災調查報告」,台北。
11. 鍾立來、黃震興(1995),「地震工程之地震模擬振動台試驗」,結構工程,第十卷,第二期,民國八十四年六月,第9~16頁。
12. 米倉亮三(1992),「最近之加勁土工法─TUSS工法及Soil Nailing工法」,營建知訊,第123期,第5-13頁。
13. 香川崇章(1978),「土構造物之模型振動實驗相似則」,土木學會論文報告集,第275號,第69-77頁,(日文)。
14. Bathurst, R. J., and Hatami, K.(1998), “Seismic Response Analysis of a Geosynthetic-Reinforced Soil Retaining Wall”, Geosynthetics International, Vol. 5, No.1-2, pp. 127-166
15. Bathurst, R. J. and Hatami, K.(1999), “Earthquake Response Analysis of Reinforced-soil Walls Using FLAC”, FLAC and Numerical Modeling in Geomechanics, Detoumay & Hart(eds.), pp. 407-415.
16. Bruce, D. A. and Jewell, R. A.(1986), “Soil Nailing : Application and Practice — Part 1”, Ground Engineering, Novermber, pp. 10-15.
17. Bruce, D. A. and Jewell, R. A.(1987), “Soil Nailing : Application and Practice — Part 2”, Ground Engineering, January, pp. 21-38.
18. Cai, F. and Ugai, K.(2003), ”Reinforcing Mechanism of Anchors in Slopes:A Numerical Comparison of Results of LEM and FEM”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol.27, Issue 7, pp. 549-564.
19. Das, B. M. and Puri, V. K.(1996),”Static and Dynamic Active Earth Pressure”, Geotechnical and Geological Engineering, Vol. 14, pp. 353-366.
20. Day, R. A. and Potts, D. M.(1998),”The Effect of Interface Properties on Retaining Wall Behavior.” , International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 22, Issue 12, pp. 1021-1033.
21. Fang Y. S. ,Yang Y. C. ,and Chen T.J.,(2000), “Case Study of Retaining Wall Failure due to Chi-Chi Earthquake”, Proceedings of International Workshop on Annual Commemoration of Chi-Chi Earthquake, pp. 241-249.
22. FHWA(1998), Manual for Design and Construction Monitoring of Soil Nail Walls, Publication No. FHWA-SA-96-069R, Federal Highway Administration, U.S.A.
23. Guilloux, A. and Schlosser, F.(1982), “Soil Nailing: Practical Applications”, Symposium on Recent Developments in Ground Improvement Techniques, Bangkok, pp. 389-397.
24. Horii, K. ,Kishida, H. ,Tateyama, M. ,and Tatsuoka, F.(1992), “Computerized Design Method for Geosynthetic-Reinforced Soil Retaining Walls for Railway Embankments”, Recent Case Histories of Permanent Geosynthetic-Reinforced Soil Retaining Walls, Proceeding of Seiken Symposium, No. 11, Tokyo, Japan, November 1992, pp. 205-218.
25. Huang, C. C., Chen, Y. H., Tateyama, M.,Tatsuoka, F.(2000), “Increasing Seismic Stability of Soil Retaining Walls Using Soil Reinforcing Techniques”, Proceedings of International Workshop on Annual Commemoration of Chi-Chi Earthquake, pp. 229-240.
26. Itasca Consulting Group, Inc.(2000), “Fast Lagrangian Analysis of Continua”, Version 4.0, Volume I ,II ,III ,IV.
27. Kim, D. S., Juran, I., Nasimov, R. and Drabkin, S.(1995), “Model Study on the Failure Mechanism of Soil-Nailed Structure under Surcharge Loading”, Geotechnical Testing Journal, GTJODJ, Vol. 18, No. 4, December 1995, pp. 421-430.
28. Kim, J. S., Kim, J. Y., Lee, S. R.(1997), “Analysis of Soil Nailed Earth Slope by Discrete Element Method”, Computers and Geotechnics, Vol. 20 No. 1, pp. 1-14.
29. Koseki, J., Hayano, K., Watanabe, K., Huang C.C.(2000), “Damage to Retaining Walls Caused by the 1999 Chi-Chi Earthquake and Model Tests on Seismic Behavior of Retaining Walls”, Proceedings of International Workshop on Annual Commemoration of Chi-Chi Earthquake, pp. 251-262.
30. Koseki, J., Munaf, Y., Tatsuoka, F., Tateyama, M., Kojima, K. and Sato, T. (1998), “Shaking and Tilt Table Tests of Geosynthetic-Reinforced Soil and Conventional-Type Retaining Walls”, Geosynthetics International, Vol.5, Nos.1-2, pp. 73-96.
31. Krizhner, F. and Rosenhouse, G.(2000), ”Numerical analysis of Tunnel Dynamic Response to Earth Motions”, Tunneling and Underground Space Technology, Vol. 15, No. 3, pp. 249-258.
32. Lee W. F.(2000), “Internal Stability Analyses of Geosynthetic Reinforced Retaining Walls”, Doctoral Dissertation, Civil and Environmental Department, University of Washington, U.S.A.
33. Lin, S. S. ,Lee, W. F. ,Holtz, R.D.(2002), ”Influence of Earthquake Characteristics on Seismic Performance of Geosynthetics Reinforced Retaining Walls”, Proceedings of the Ground Improvement and Geosynthetics Symposium, Bankok , Thailand, pp. 34-47.
34. Matsuo, O., Tsutsumi, T., Yokoyama, K. and Saito, Y. (1998), “Shaking Table Tests and Analyses of Geosynthetic-Reinforced Soil Retaining Walls”, Geosynthetics International, Vol. 5, No. 1-2, pp. 97-126.
35. Newmark, N. M.(1965), “Effect of Earthquakes on Dam and Embankments”, Geotechnique, Vol. 15, No. 2, pp. 139-159.
36. Raju, G. V. R. ,Wong, I. H. ,and Low, B. K.(1997), “Experimental Nailed Soil Walls”, Geotechnical Testing Journal, GTJODJ, Vol. 20, No. 1, March 1997 , pp. 90-102.
37. Schlosser F.(1982), “Behaviour and Design of Soil Nailing”, Symposium on Recent Developments in Ground Improvement Techniques, Bangkok, pp. 399-413.
38. Shen, C. K. ,Herrmann, L. R.,Romstad, K. M. ,Bang, S. ,Kim, Y.S. ,and Denatale, J.S.,(1981), “In Situ Earth Reinforcement Lateral Support System”, Report No. 81-03, Department of Civil Engineering, University of California, at Davis, U.S.A.
39. Smith, I. M., and Su, N.(1997), “Three-Dimensional FE Analysis of a Nailed Soil Wall Curved in Plan”, International Journal of Numerical and Analytical Methods in Geomechanics, Vol. 21, pp. 583-597.
40. Stocker, M. F. ,Korber, G. W. ,Gassler, G. ,and Gudehus, G.(1979), “Soil Nailing”, International Conference on Soil Reinforcement, Paris, pp. 469-474.
41. Stocker, M. F. and Riedinger, G.(1990), “The Bearing Behavior of Nailed Retaining Structures”, Geotechnical Special Publication, No. 25 ,ASCE , pp. 612-628.
42. Wong, I. H., Low, B. K., Pang, P. Y., and Raju, G. V. R.(1997), ’’Field Performance of Nailed Soil Wall in Residual Soil”, Journal of Performance of Constructed Facilities, August, pp. 105-112.
43. Zhang M. ,Song E. ,Chen Z.(1999), “Ground Movement Analysis of Soil Nailing Construction by Three-Dimentional (3-D)Finite Element Modeling(FEM),” Computers and Geotechnics, Vol. 25, pp. 191-204.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔