(34.204.185.54) 您好!臺灣時間:2021/04/11 06:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:翁元滔
研究生(外文):Yuan-Tao Weng
論文名稱:建築結構多振態耐震性能評析與位移導向設計法研究
論文名稱(外文):A Study of Multi-mode Seismic Performance-based Evaluation and Displacement-based Design Procedures
指導教授:蔡克銓蔡克銓引用關係
指導教授(外文):Tsai, Keh-Chyuan
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:190
中文關鍵詞:耐震性能評估位移導向設計振態貢獻參數
外文關鍵詞:Seismic Performance EvaluationDisplacement-based DesignModal Contribution Factor
相關次數:
  • 被引用被引用:10
  • 點閱點閱:376
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先介紹結構耐震性能評析與設計之理念、架構與新近發展,其中介紹位移導向設計法所需設計位移反應譜之簡易製作程序,並與台灣921集集大地震中數個測站所得資料加以分析比較以檢討証實現行耐震設計規範對非線性位移反應需求之估計尚屬不夠?另外,本研究利用可調整梁柱勁度比與結構基本週期之簡化建築結構模型建立受震反應之振態貢獻參數反應譜,以作為發展多振態設計方法之依據,並發現在一般結構基本週期之範圍內,較高振態反應對基底剪力反應之貢獻比例最高可達約20%,對傾倒彎矩反應之貢獻比例最高可達約15%,而對頂層位移反應之貢獻比例最高僅達約10%。
本研究另一重點為對常見之結構耐震性能評析法例如容量震譜法或位移係數法等提出改進方案,其中針對習見位移係數法僅考慮基本振態反應、結構系統變位特性及非線性反應等估計方法過於粗略的缺點,提出可考慮結構剪力與撓曲勁度比例之多振態改良型位移係數法,並以相關計算例與常見耐震評估法及非線性歷時動力分析(NLRHA)結果加以驗證比較,分析結果顯示,可考慮多振態之側推分析法與作者所提改良型位移係數法對建物之中高樓層受震反應的評估與動力分析結果較為相近。另外,由於目前有關位移設計法之研究仍無法有效控制或預測非線性多自由度結構之耐震性能,故本文利用Calvi與Kingsley所提出之位移導向耐震設計原理,以預設結構主要振態形狀作為設計位移分佈形狀,轉換成設計側向力分佈形狀,以發展出建築結構多振態位移導向設計程序,並以一座三層樓含挫屈束制支撐之鋼管混凝土複合平面構架及一座廿樓韌性抗彎鋼構架製作設計示範例並測試其性能表現,並與傳統強度設計法加以比較,發現位移導向設計之結構性能表現較傳統譜加速度導向設計結果易接近耐震性能基準,且各樓層受震反應分佈較為均勻,證明其可行性良好,最後作出本研究之總結與後續研發改良之建議。
In the study, the concept, framework and recent developments on performance-based seismic evaluation and design (PBSE and PBSD) procedures are discussed first. The simplified procedures for the construction of design displacement response spectra required for the implementation of displacement-based seismic design (DBSD) are then introduced. The resulting displacement response spectra are compared with the nonlinear displacement response spectra computed directly from the ground accelerations recorded from 10 sites located in Taichung Region during the 1999 Chi-Chi Taiwan earthquake. It is found that the nonlinear displacement demand estimated in the tentative seismic force provisions for building structures in Taiwan are unconservative? Moreover, modal contribution factor (MCF) spectra are constructed by using a simplified building structural model. By varying the stiffness ratio of the beams and columns and the fundamental period, individual modal contributions to the seismic response have been identified and can be used as a basis to develop multi-mode seismic design procedures. In the common range of structural fundamental period, the higher-mode contribution of base shear is about to 20% of the total base shear at most. For overturning moment, it is about 15% at most, and for roof displacement, the higher-mode contribution is only about 10% at most.
This research then reviewed the existing methods for seismic performance evaluation of building structures. It includes the capacity-spectra method and the displacement coefficient method. Some of these methods might be over-simplified: (1) only considers the contribution of the first mode; (2)or the manners considering the inelastic demands and the lateral deformation characteristics of the structural systems are too rough. The study discusses some possible improvements of these methods. Improved multi-mode displacement coefficient method incorporating the effects of the shear and flexure rigidity ratio is proposed. Some simple numerical examples are illustrated for the verification of the proposed method and the results are compared with some existing methods for seismic performance evaluation of building structures in different levels of seismic hazard. Analytical results confirm that the proposed method is more accurate in predicting the maximum response. Furthermore, by using the principle of displacement-based seismic design procedure of MDOF system developed by Calvi and Kingsley, this study assumes the shape of the lateral design story forces is transformed from the shape of the lateral design story displacements. Then the proposed multi-mode displacement-based seismic design procedure for building structures, in which the design lateral story displacements transformed from the shapes of the presumed dominant modal shapes along the building height is established. The proposed multi-mode displacement-based seismic design procedure is applied to the design of a three-storey CFT buckling restrained braced frame specimen and a twenty-storey steel ductile moment-resisting example building for verifying its feasibility. The analytical results show that the proposed displacement-based design method is more accurate than the current spectral acceleration-based design approach in achieving the target performance. The distribution of the seismic story deformations of the example buildings designed by the proposed displacement-based design procedure is more uniform along the building height. This research concludes with the future research needs for PBSE and PBSD.
目 錄
第一章 導論
1.1前言 1-1
1.2結構耐震性能評析的發展 1-2
1.2.1容量震譜法之特點 1-2
1.2.2位移係數法之特點 1-3
1.3結構耐震性能導向設計的發展 1-3
1.3.1位移導向設計法之特點 1-5
1.3.2能量導向設計法之特點 1-6
1.4結構耐震性能基準設定 1-6
1.4.1地震需求等級 1-7
1.4.2性能設計基準 1-7
1.5研究動機 1-7
1.6研究內容 1-8
第二章 非線性設計位移反應譜
2.1前言 2-1
2.2非線性設計位移反應譜之製作 2-2
2.3正規化位移需求 2-2
2.3.1降伏強度折減係數 、位移韌性係數 及結構基本週期 三者之關係 2-3
第三章 設計振態貢獻參數研究
3.1結構受震振態反應基本理論 3-1
3.2結構所需振態數之決定 3-2
3.3設計振態貢獻係數反應譜之製作 3-3
3.3.1分析模型設定與MCF反應譜製作方式 3-3
3.3.2 MCF反應譜 3-4
3.3.3 較高主要振態之MCF反應譜表現 3-5
3.4小結 3-6
第四章 建築結構耐震性能多振態評析法
4.1前言 4-1
4.2建築結構耐震評析方法簡介 4-1
4.2.1 ATC-40容量震譜方法A 4-1
4.2.2 位移係數法 4-3
4.2.3振態側推分析法 4-4
4.2.4多振態改良型位移係數法 4-6
4.2.5地震側向力為倒三角形分佈之近似位移係數法 4-10
4.3建築結構耐震性能評析示範例 4-11
4.3.1 BRBF鋼構架耐震性能評估示範例 4-11
4.3.2 MRF鋼構架10F耐震性能評估示範例 4-28
第五章 建築結構多振態位移設計法
5.1前言 5-1
5.2位移導向耐震設計原理 5-1
5.2.1多振態位移導向耐震設計程序 5-4
5.3設計示範例 5-6
5.3.1 CFT/BRBF擬動態試驗構架設計 5-6
5.3.2 二十層樓鋼造韌性抗彎構架SMRF20F設計示範例 5-14
第六章 結論與建議
6.1 結論與建議 6-1
6.1.1 設計位移反應譜 6-1
6.1.2 設計振態貢獻參數研究 6-1
6.1.3 耐震性能評析方法 6-2
6.1.4 多振態位移設計 6-2
參考文獻 R-1
附錄A 建築結構簡化模型方程式
A.1原理與模型特性 A-1
A.1.1基本假設 A-1
A.1.2簡化模型力學原理 A-1
A.2建物遭遇地震時各主要振態分析 A-3
A.2.1第一振態反應分析 A-4
A.2.2第二振態反應分析 A-6
A.2.3第三振態反應分析 A-8
A.2.4水平地震側向力呈倒三角形分佈之側向變位反應 A-10
1. Allahabadi, R. and Powell, G. H., (1988) “DRAIN-2DX user guide”, Report No. UCB/EERC-88/06, Earthquake Engineering Research Center, Univerisity of California Berkeley, Calif.
2. Alonso, J., Miranda, E., and Sata-Ana, P. (1996) “Inelastic Displacement Demands for Structures Built on Soft Soils”, Proceedings, 11th World Conference on Earthquake Engineering, Paper No. 40, Acapulco, Mexico, Elsevier Science Ltd.
3. Aschheim, M. and Black, E. F. (2000) “Yield Point Spectra for Seismic Design and Rehabilitation”, Earthquake Spectra, Vol. 16, No. 2, 317-335.
4. Aschheim, M. (2002) “Seismic Design Based on the Yield Point Spectra”, Earthquake Spectra, Vol. 18, No. 4, 581-600.
5. ATC, (1995) “A Critical Review of Current Approaches to Earthquake-Resistant Design”, ATC-34, Applied Technology Council, Redwood City, California.
6. ATC, (1996) “Seismic evaluation and retrofit of concrete of concrete buildings, Vol. 1”, ATC-40, Applied Technology Council, Redwood City.
7. Blume, J. A. (1968) “Dynamics Characteristics of Multi-story Buildings”, Journal of the Structural Division, ASCE, 94, 337-402.
8. Bommer, J. and Elnashai S. (1999) “Displacement Spectra for Seismic Design”, Journal of Earthquake Engineering, Vol. 3, No. 1, 1-32.
9. Calvi, G. M. and Kingsley, G. R. (1995) “Displacement-based seismic design of multi-degree-of-freedom bridge structures”, Earthquake Engineering & Structural Dynamics, Vol. 24, 1247-1266.
10. CEN, (1992) “Design of Composite Steel and Concrete Structures-Part 1-1: General Rules and Rules for Buildings (EuroCode 4)”, EuroCommittee for Standardization, Brussels, Belguim.
11. CEN, (1998) “Earthquake Resistant Design of Structures, Part 1-1: General Rules and Rules for Buildings-Seismic Actions and General Requirements for Structures (EuroCode 8)”, ENV, Euro Committee for Standardization, Brussels, Belguim.
12. Collins, K. R., (1998) “Reliability-Based Design in the Context of Performance-Based Design”, Proceedings, Paper No. T178-4, Structural Engineering Worldwide.
13. Chintanapakdee, C. and Chopra, A. K. (2003) “Evaluation of Modal Pushover Analysis using Generic Frames”, Journal of Earthquake Engineering and Structural Dynamics, Vol. 32, 417-442.
14. Chopra, A. K. (1996) “Modal Analysis of Linear Dynamics Systems: Physical Interpretation”, Journal of Structural Engineering, ASCE, Vol. 122, No. 5, May.
15. Chopra A. K. and Goel R. K., (2000) ”Evaluation of NSP to Estimate Seismic Deformation: SDF Systems”, Journal of Structural Engineering, ASCE, Vol. 126, No.4, p.482~490.
16. Chopra, A.K. (2001) “Dynamics of Structures: Theory and Applications to Earthquake Engineering”, Prentice Hall, Englewood Cliff, N.J.
17. Chopra A. K. and Goel R. K., (2001) ”A Modal Pushover Analysis Procedure to Estimate Seismic Demand for Buildings : Theory and Preliminary Evaluation”, PEER Report 2001/03, Pacific Earthquake Engineering Research Center, College of Engineering, University of California Berkeley.
18. Chopra, A. K. and Chintanapakdee, C. (2001) “Statistics of SDF-System Estimate of Roof Displacement for Pushover Analysis of Buildings”, PEER Report 2001/16, Pacific Earthquake Engineering Research Center, University of California, Berkeley.
19. Coull, A. and Choudhury, J. R. (1967) “Analysis of Coupled Shear Walls”, Journal of the American Concrete Institute, No. 64, 587-601.
20. CSI Inc., (1997) “SAP2000N, Integrated Finite Element Analysis and Design of Structures”, Computer and Structures, Inc., Berkeley, California, USA.
21. Deierlein, G.. G.. and Heish, S. H. (1990) ”Seismic Response of Steel Frames with Semi-Rigid Connections Using the Capacity Spectrum Method”, Proc., 4th U.S. National Conference on Earthquake Engineering, Vol. 2, pp.863-872.
22. Fajfar, P., and Vidic, T. (1994) “Consistent Inelastic Design Spectra: Hysteretic and Energy”, Journal of Earthquake Engineering and Structural Dynamics, Vol. 23, 523-537.
23. Fajfar, P., and GA PER I , P. (1996) “The N2 Method for the Seismic Damage Analysis of RC Buildings”, Journal of Earthquake Engineering and Structural Dynamics, Vol. 25, 31-46.
24. FEMA-273, (1997) “NEHRP Guidelines for the Seismic Rehabilitation of Buildings“, BSSC, Federal Emergency Management Agency, Washington, D. C.
25. FEMA-302, (1997) “NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures“, BSSC, Federal Emergency Management Agency, Washington, D. C.
26. Freeman, S. A., Nicoletti, J. P. and Tyrell, J. V., (1975) “Evaluations of Existing Buildings for Seismic risk-A Case Study of Puget Sound Naval Shipyard”, Bremerton, Washington, Proceeding of the 1st U.S. National Conference on Earthquake Engineering, EERI, Berkley, Oakland, CA.
27. Freeman, S. A., (1998) “Development And Use of Capacity Spectrum Method”, Proceeding of the 6th U.S. National Conference on Earthquake Engineering, CD-ROM, EERI, Oakland, CA.
28. Gupta, B. and Kunnath, S. K. (2000) “Adaptive Spectra-Based Pushover Procedure for Seismic Evaluation of Structures”, Earthquake Spectra, Vol. 16, No.2, 367-391.
29. Heidebrecht, A. C. and Stafford Smith, B. (1973) “Approximate Analysis of Tall Wall-Frame Structures”, Journal of the Structural Engineering Division, Proceedings, ASCE, No. ST2, Feb., 199-221.
30. Khan, F.R., and Sbarounis, J.A. (1964) “Interaction of Shear Wall and Frames”, Journal of the Structural Division, ASCE, 90(3), 285-335.
31. Kowalsky, M. J., Priestley, M. J. N. and MacRae, G. A. (1994) “Displacement-Based Design, A Methodology for Seismic Design Applied to SDOF Reinforced Concrete Structures”, Structural Systems Research, SSRP-94/16, University of California, San Diego.
1. Kowalsky, M. J., Priestley, M. J. N., and MacRae, G. A. (1995) “Displacement-Based Design of RC Bridge Columns in Seismic Regions”, Journal of Earthquake Engineering and Structural Dynamics, Vol. 24, 1623-1643.
2. Kowalsky, M. J. (2002) “A Displacement-based Approach for the Seismic Design of Continuous Concrete Bridges”, Journal of Earthquake Engineering and Structural Dynamics, Vol. 31, 719-747.
32. Krawinkler, H. (1996) “A Few Basic Concepts for Performance-Based Seismic Design”, Proceedings, 11th World Conference on Earthquake Engineering, Paper No. 1113, Acapulco, Mexico, Elsevier Science Ltd.
33. Lee Soon-Sik and Goel, S. C. (2000) “A Seismic Design Procedure Base on performance Limit States.” International Workshop on Annual Commemoration of Chi-Chi Earthquake, Sep. 18-20, Taipei, 291-302.
34. ICBO, (2000) “International Building Code”, 2000 Edition, Whittiker, CA.
35. Leelataviwat, S., Goel, S. C. and Stojadinovic, B. (1999) “Toward Performance-Based Seismic Design of Stuctures.” Earthquake Spectra, Vol. 15, No. 3, August, 435-461.
36. Leelataviwat, S., Goel, S. C. and Stojadinovic, B. (2002) “Energy-based Seismic Design of Structures using Yield Mechanism and Target Drift,” Journal of Structural Engineering, Vol. 128, No. 8, August, 1046-1054.
37. Loeding, S., Kowalsky, M.J., and Priestley, M.J.N., (1998) “Displacement-based Design Methodology Applied to R.C. Building Frames”, Structural Systems Research Report SSRP 98/08, Structures Division, University of California, San Diego, 269 pp.
38. Mazzolani, F. M., Montuori, R. and Piluso, V. (2000) “Performance Based Design of Seismic-resistent MR-frames”, Behavior of Steel Structures in Seismic Areas, Balkema Rotterdam, 611-618.
39. Medhekar, M. S. and Kennedy, D. J. L. (2000) “Displacement-Based Seismic Design of Buildings-Theory”, Engineering Structures, Vol.22, No.3, 201-209.
40. Medhekar, M. S. and Kennedy, D. J. L. (2000) “Displacement-Based Seismic Design of Buildings -Application”, Engineering Structures, Vol.22, No.3, 210-221.
41. Miranda, E. (1996) “Assessment of the Seismic Vulnerability of Existing Buildings”, Proceedings, 11th World Conference on Earthquake Engineering, Paper No. 40, Elsevier Science Ltd.
42. Miranda, E. (1999) “Approximate lateral Deformation Demands in Multistory Buildings.” Journal of Structural Engineering, ASCE, Vol. 125, No. 4, April, 417-425.
43. Miranda, E. and Reyes, C. J. (2002) “Approximate lateral Drift Demands in Multistory Buildings with Non-uniform Stiffness.” Journal of Structural Engineering, ASCE, Vol. 128, No. 7, July.
44. Miranda, E. (2002) “Evaluation of Approximate Methods to Estimate Maximum Inelastic Displacement Demands,” Journal of Earthquake Engineering and Structural Dynamics, Vol. 31, 719-747.
45. Paret, T. F., Sasaki, K. K., Eilbeck, D. H. and Freeman, S. A. (1998) “Approximate Inelastic Procedures to Identify Failure Mechanics from Higher Mode Effects”, Proceedings, 11th World Conference on Earthquake Engineering, Paper No. 966, Elsevier Science Ltd.
46. Priestley, M. J. N. (1996) “Displacement-Based Seismic Assessment of Existing Reinforced Concrete Buildings”, Bulletin of the New Zealand National Society for Earthquake Engineering, Vol. 29, No. 4, Dec., 256-272.
47. Priestley, M. J. N.; Calvi, G. M. (1997) “Concepts and procedures for direct displacement-based design and assessment”, Seismic Design Methodologies for the Next Generation of Codes, Proceedings of the International Workshop, Bled, Slovenia, 24-27 June 1997, A.A. Balkema, Rotterdam and Brookfield, Vermont, 1997, pages 171-182.
48. Priestley, M. J. N. and Kowalsky, M. J. (2000) “Direct Displacement-based Seismic Design of Concrete Buildings”, Bulletin of the New Zealand National Society for Earthquake Engineering, Vol. 33, No. 4, 421-444.
49. Qi, X. and Moehle, J. P. (1991) “Displacement Design Approach for Reinforced Concrete Structures Subjected to Earthquakes”, Report No UCB/EERC-91/02, Earthquake Engineering Research Center, University of California, Berkeley.
50. Ramirez, O.M., M.C. Constantinou, C.A. Kircher, A. Whittaker, M. Johnson and J.D. Gomez, 2000. Development and Evaluation of Simplified Procedures of Analysis and Design for Structures with Passive Energy Dissipation System, Technical Report MCEER-00-0010, Multidisciplinary Center for Earthquake Engineering Research, University of Buffalo, State University of New York, Buffalo, NY.
51. Reinhorn, A. M. Li, C., and Constantinou, M. C. (1995) “Experimental and Analytical Investigations of Seismic Retrofit of Structures with Supplemental Damping”, Report No. MCEER-95-0001, State University of NewYork at Buffalo, Buffalo, N. Y.
52. Rosman, R. (1964) “Approximate Analysis of Shear Walls Subject to Lateral Loads”, Journal of the American Concrete Institute, No.61, 717-731.
53. Saiidi, M. and Sozen, M. A. (1979) “Simple and Complex Models for Nonlinear Seismic Response of Reinforced Concrete Structures”, SRS-465, Civil Engineering Studies, University of Illinois, Urbana.
54. Sasaki, K. K., Freeman, S. A. and Paret, T. F. (1998) “Multi-Mode Pushover Procedure (MMP) — A Method to Identify the Effects of Higher Modes in A Pushover Analysis”, Proceedings, 6th National Conference on Earthquake Engineering, Seattle, WA.
55. SEAOC, (1995)“Performance Based Seismic Engineering of Building”, Seismology Committee, Structural Engineers Association of California, Sacramento, California.
56. Stafford Smith, B., Girgis, M. A., and Abate, A., (1981) “Analogous Frames for the Analysis of Tall Shear Wall Structures”, Canadian Journal of Civil Engineering, No. 8, 179-185.
57. Stafford Smith, B., Kuster, M., and Hoenderkamp, J. C. D., (1981) “A Generalized Approach to the Deflection Analysis of Braced Frame, Rigid Frame and Coupled Wall Structures”, Canadian Journal of Civil Engineering, No. 8, 230-240.
58. Stafford Smith, B., Kuster, M., and Hoenderkamp, J. C. D., (1984) “Generalized Method for Estimating Drift in High-Rise Structures”, Journal of Structural Engineering, ASCE, Vol. 110, No. 7, July, 1549-1562.
59. Stafford Smith, B. and Elizabeth Crowe, (1986) “Estimating periods of Vibration of Tall Buildings”, Journal of Structural Engineering, ASCE, Vol. 112, No. 5, May, 1005-1019.
60. Shibata, A. and Sozen, M. A. (1976) “Substitute-Structure Method for Seismic Design in R/C”, Journal of the Structural Division, Vol. 102, No. ST1, Jan., 1-18.
61. Timoshenko, S. (1955) “Vibration Probrems in Engineerings”, D. Van Nostrand Co. Inc., New York, N.Y., 337-338.
62. Tolis, S. V. and Faccioli, E. (1999) “Displacement Design Spectra”, Journal of Earthquake Engineering, Vol. 3, No. 1, 107-125.
63. Valley, M. T. and Harris, J. R. (1998) “Application of Modal Techniques in A Pushover Analysis”, Proceedings, 6th National Conference on Earthquake Engineering, Seattle, WA.
64. Vidic, T. ,Fajfar, P. and Fischinger, M. (1992) “A Procedure for Determining Consistent Inelastic Design Spectra”, in Krawinkler H. and Fajfar P. (eds), Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings, J. A. Blume EERC Report No. 103, Stanford University and University of Ljubljana, 9-32.
65. Vidic, T. ,Fajfar, P. and Fischinger, M. (1994) “Consistent Inelastic Design Spectra: Strength and Displacement”, Journal of Earthquake Engineering and Structural Dynamics, Vol. 23, 507-521.
66. 林聖霖、蔡克銓,「全鋼型與可拆型挫屈束制消能支撐之試驗與研究」,國立台灣大學工學院地震工程研究中心,Report No. R92-03,台北(2003)。
67. 林裕淵,「功能設計消能減震結構之位移設計法」,國立台灣大學土木工程研究所博士論文,台北(2001)。
68. 何政,歐進萍,「鋼筋混凝土結構基於改進能力譜法之地震損傷性能設計」,地震工程與工程振動,Vol. 20, No. 2, Jun., 2000.
69. 內政部,「建築物耐震設計規範及解說」,民國88年12月29日及89年1月15日修正版,營建雜誌社(2000)。
70. 內政部建築研究所,「建築物耐震規範及解說之修訂研究」,研究案編號:MOIS-892040,台北(2000)。
71. 內政部建築研究所,「建築物耐震規範及解說之修訂研究」草案2002年10月修正版,台北(2002)。
72. 黃彥智,「含挫屈束制消能支撐構架耐震性能之試驗與分析研究」,國立台灣大學土木工程研究所碩士論文,蔡克銓教授指導,台北(2002)。
73. 蔡克銓、羅俊雄、葉超雄、蘇晴茂,「建築物耐震規範示範例之研擬及規範條文之研修」,內政部建築研究所研究計畫成果報告,報告編號GPN:1009100131,台北(2002)。
74. 蔡克銓、賴俊維,「鋼骨消能支撐構架之耐震研究」,中華民國結構工程學會結構工程季刊,第十七卷,第二期,台北(2002)。
75. 蔡克銓、翁崇興、黃彥智,「雙鋼管型挫屈束制消能支撐之接合行為研究」,中華民國結構工程學會結構工程季刊,台北(2003)。
76. 蔡兆如,「加消能裝置之鋼斜撐結構之耐震行為研究」,國立台灣大學土木工程研究所碩士論文,台北(2002)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔