(3.230.143.40) 您好!臺灣時間:2021/04/21 07:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃文正
研究生(外文):Wen-Jeng Hwang
論文名稱:強介電複合鈣鈦礦相陶瓷與薄膜之製備及特性分析
論文名稱(外文):PREPARATION AND CHARACTERIZATION OF FERROELECTRIC COMPLEX PEROVSKITE CERAMICS AND THIN FILMS
指導教授:呂宗昕
指導教授(外文):Chung-Hsin Lu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:163
中文關鍵詞:複合鈣鈦礦相強介電材料低溫水熱鎂鈮酸鉛鎳鈮酸鉛鋯鈦酸鉛銀鈀金屬
外文關鍵詞:complex perovskitesferroelectricshow temperaturehydrothermallead magensium niobatelead nickel niobatelead zirconate titanatesilver palladium metals
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究著重於強介電複合鈣鈦礦陶瓷材料的低溫製程,以水熱法所得先驅物經800℃低溫煆燒製備一適用於積層陶瓷電容器(multilayer ceramic capacitors,簡稱MLCC)的新型強介電Pb(Ni1/3Nb2/3)1-xZrxO3(簡稱PNN-PZ)陶瓷材料。利用改良的煆燒程序,製得具有介電峰平坦化與高介電值的強介電Pb(Mg1/3Nb2/3)yTi1-yO3(簡稱PMN-PT)陶瓷,並能於850℃低溫燒結,將可適用於發展純銀內電極的MLCC。在MLCC應用方面進一步探討兩種強介電複合鈣鈦礦相Pb(Mg1/3Nb2/3)O3(簡稱PMN)及Pb(Ni1/3Nb2/3)O3(簡稱PNN)陶瓷與Ag/Pd內電極金屬材料間在加熱過程的反應機制。在強介電隨機存取記憶體(ferroelectric random access memories,簡稱FeRAM)的應用方面,以高壓退火程序經350℃低溫反應,獲得高結晶化強介電複合鈣鈦礦相Pb(Zr, Ti)O3(簡稱PZT)薄膜,較傳統大氣壓製程降低250℃,並有效地防止薄膜成份與基板間的擴散。
首先以高反應性的水熱法程序製備新型的強介電PNN-PZ。經800℃低溫煆燒反應後,則可得PNN-PZ鈣鈦礦純相;但利用傳統固相法則無法獲得鈣鈦礦純相,其成份中仍殘留有燒綠石相。當PNN-PZ固溶體中PZ含量提高時,則其固溶體的居里溫度及其介電峰值隨之增加。當強介電PNN-PZ陶瓷中PZ含量增加時,其弛緩性強介電特徵逐漸消失,但PZ含量提高時可增加其電氣特性,使其適用於MLCC元件上。
再則以混合燒結程序製備具有高介電值之強介電PMN-PT陶瓷,以期獲得具有高介電值且介電峰平坦化的MLCC介電材料。當煆燒溫度提高時,PMN-PT粉體的粒徑及微晶粒變大,進而影響混合燒結後的介電特性。當強介電PMN-PT陶瓷合成時的煆燒溫度提高,在混合燒燒結過程中趨向部份反應而產生多組成相,進而產生介電平坦化。利用改良的介電對數混合理論,成功地模擬混合燒結後燒結體的介電特性,進而瞭解燒結體中各組成相的含量。經850℃低溫混合燒結後可製得在-10℃~100℃溫度範圍內介電溫度系數小於±15%且介電值超過6000的介電材料。證實以新型混合燒結程序本研究成功地製備具有低溫燒結性及高介電值之強介電材料。
本論文進一步針對強介電複合鈣鈦礦相PMN及PNN陶瓷與Ag/Pd交互反應進行研究。發現經1000℃反應後PMN與純銀無明顯反應,與70Ag/30Pd反應則僅有微量PMN相分解,而在30Ag/70Pd系統中PMN相幾乎完全分解,而在PMN與純鈀的系統,經850℃反應後便無PMN鈣鈦礦相存在。可知Ag/Pd中Pd含量提高則促使PMN分解成燒綠石相及氧化鉛。另一方面PNN與Ag/Pd金屬系統則具有明顯的反應,PNN與純Ag以1000℃反應後,大部份PNN已分解,可知PNN結構熱穩定性較PMN低。以70Ag/30Pd則可適合於PMN弛緩性強介電材料,則可降低MLCC之材料成本。
本論文最後以高壓程序(high-pressure crystallization, 簡稱HPC)促進強介電複合鈣鈦礦相PZT薄膜的結晶,在16.5MPa高壓環璄下350℃退火可製得結晶性良好的PZT薄膜,比傳統大氣壓下進行退火降低達250℃。在低溫退火過程中晶粒及微晶粒隨退火溫度及時間增加而變大。因低溫退火程序降低成份的遷移率及擴散性,避免PZT薄膜中鉛成份的異常擴散。故此發展的高壓低溫結晶化程序除可降低能源消耗及避免異常擴散問題外,能適用於需低溫的半導體製程,擴展PZT薄膜應用範圍。

This thesis mainly aimed at the low temperature processing of complex perovskite ceramic materials. The Pb(Ni1/3Nb2/3)1-xZrxO3 (PNN-PZ) ferroelectrics with high dielectric constants were successfully prepared via a newly developed hydrothermal process for the application to multilayer ceramic capacitors (MLCC). The Pb(Mg1/3Nb2/3)yTi1-yO3 (PMN-PT) ferroelectrics with high dielectric constants, flat dielectric properties and good sinterability were obtained via a modified calcination process. The mechanism of interfacial reactions between Pb(Mg1/3Nb2/3)O3 (PMN) as well as Pb(Ni1/3Nb2/3)O3 (PNN) and Ag/Pd metals were investigated. The well-crystallized ferroelectric Pb(Zr,Ti)O3 (PZT) thin films for the application of ferroelectric random access memories (FeRAM) were successfully prepared at as low as 350℃via a new high-pressure crystallization (HPC) process.
PNN-PZ ceramics were successfully prepared via a newly developed hydrothermal process. With 800oC-calcination, all precursors converted into perovskite phases. In the PNN-PZ system, increasing PZ content resulted in a rise in the apparent Curie temperature as well as the dielectric permittivity. With higher PZ contents, the dielectric properties gradually became less dispersive, reflecting a weakening of the relaxor characteristics of the formed perovskites. This study revealed that the hydrothermal process successfully prepared PNN-PZ ferroelectric materials at 800oC, and increasing PZ contents improved their ferroelectric properties to be adopted in MLCC.
A mixed-sintering process was developed for preparing densified PMN-PT ceramics. With an increase in the calcination temperatures, the mixed-sintered solid solutions were subjected to produce multi-phasic solid solutions, and the temperature dependence of dielectric constants was reduced. The dielectric constants of PMN-PT were successfully simulated in a modified logarithmic mixing equation. After 850oC-sintering, the sintered samples exhibited a high dielectric constant greater than 6000, and a temperature coefficient of capacitance less than ±15% within temperature range form -10oC to 100oC. These results demonstrated that the new mixed sintering process successfully prepared PMN-PT ferroelectrics with good sinterability, high dielectric constants, and flat dielectric properties.
The interfacial reactions between two types of ferroelectrics (PMN and PNN) and Ag/Pd metals were also investigated. After heating at 1000oC, no reactions occurred between PMN and pure Ag, while in 70Ag/30Pd system PMN slightly decomposed, and in 30Ag/70Pd system PMN completely decomposed. Increasing the contents of Pd in Ag/Pd enhanced the decomposition reaction of PMN for producing PbO and pyrochlore phase. On the other hand, PNN vigorously reacted with Ag/Pd metal. In the pure Ag system, most PNN decomposed after 1000oC-heating, suggesting that PNN was thermally less stable than that of PMN. The above results indicate that 70Ag/30Pd can be used as internal electrodes for PMN relaxor ferroelectrics, and can reduce the materials cost in MLCC.
The crystallization of lead zirconate titanate (PZT) thin films was significantly enhanced using a high-pressure crystallization (HPC) process. By annealing at around 16.5 MPa, well-crystallized PZT thin films were successfully prepared at temperature as low as 350oC which is 200oC lower than that in the conventional atmospheric annealing process. This novel process considerably reduced the thermal budget and energy consumption during film processing. This developed process effectively suppressed both the outward diffusion of lead species from PZT films into the substrate region and the diffusion of titanium species from the bottom electrodes into the silicon layers. Accordingly, this process can be applied to the fabrication of FeRAM and broaden the application of PZT thin films.

第一章 緒論 -----------------------------------------------1
1-1 強介電陶瓷材料之簡介 ----------------------------------1
1-1-1強介電陶瓷材料之發展背景 -----------------------------1
1-1-2 陶瓷材料之強介電性及化學結構 ------------------------2
1-2 鈣鈦礦相陶瓷之強介電相變 ------------------------------5
1-2-1 正規強介電性相變 ------------------------------------5
1-2-2 弛緩性強介電相變 ------------------------------------5
1-2-3 反強介電性相變 -------------------------------------10
1-3 強介電複合鈣鈦礦相陶瓷之應用 -------------------------10
1-3-1 積層陶瓷電容器 -------------------------------------13
1-3-2 強介電隨機存取記憶體 -------------------------------19
1-4 強介電複合鈣鈦礦相陶瓷與薄膜之製備 -------------------23
1-4-1 陶瓷粉體之合成 -------------------------------------25
1-4-2 強介電薄膜之製備 -----------------------------------28
1-5 介電平坦化製程及混合理論 -----------------------------29
1-5-1 介電平坦化製程 -------------------------------------29
1-5-2 介電混合理論 ---------------------------------------35
1-6 研究動機及目的 ---------------------------------------38
第二章 強介電複合鈣鈦礦相PNN基材陶瓷之製備與電性分析 -----41
2-1 簡介 -------------------------------------------------41
2-2 實驗步驟 ---------------------------------------------43
2-3 結果與討論 -------------------------------------------47
2-3-1 固相法合成PNN-PZ陶瓷 -------------------------------47
2-3-2 水熱法合成PNN-PZ陶瓷 -------------------------------50
2-3-3 強介電PNN-PZ陶瓷之結晶結構 -------------------------53
2-3-4 強介電PNN-PZ陶瓷之電氣特性 -------------------------57
2-4 結論 --------------------------------------------------68
第三章 強介電複合鈣鈦礦相PMN基材陶瓷之燒結及介電特性 -----69
3-1 簡介 --------------------------------------------------69
3-2 實驗步驟 ----------------------------------------------71
3-3 結果與討論 --------------------------------------------74
3-3-1 煆燒條件對介電特性的影響 ----------------------------74
3-3-2 燒結程序對介電常數之影響 ---------------------------83
3-3-3 煆燒條件對燒結後反應量之影響 -----------------------95
3-3-4 介電平坦化材料之製備 ------------------------------100
3-4 結論 ------------------------------------------------105
第四章 強介電複合鈣鈦礦相陶瓷與金屬內電極材料之反應性 ---106
4-1 簡介 ------------------------------------------------106
4-2 實驗步驟 --------------------------------------------108
4-2-1 強介電PMN及PNN陶瓷之製備 --------------------------108
4-2-2 強介電PMN及PNN陶瓷與Ag/Pd之反應及分析 -------------108
4-3 結果與討論 ------------------------------------------110
4-3-1 強介電PMN陶瓷與Ag/Pd反應後之生成相 ----------------110
4-3-2 強介電PMN陶瓷與Ag/Pd之熱分析結果 -----------------117
4-3-3 強介電PNN陶瓷與Ag/Pd之反應機制 -------------------120
4-3-4 強介電PNN陶瓷與Ag/Pd反應之微結構變化 -------------128
4-4 結論 ------------------------------------------------137
第五章 強介電複合鈣鈦礦相Pb(Zr,Ti)O3陶瓷薄膜之製備 ------138
5-1 簡介 ------------------------------------------------138
5-2 實驗步驟 --------------------------------------------140
5-3 結果與討論 ------------------------------------------142
5-3-1 大氣壓力及高壓環境下薄膜的反應性 ------------------142
5-3-2 反應時間對生成相及顯微結構之影響 ------------------146
5-3-3 薄膜成份與基板間之擴散 ----------------------------148
5-4 結論 ------------------------------------------------154
第六章 結論 ----------------------------------------------155
參考文獻 ------------------------------------------------158

[1] G. H. Haertling, J. Am. Ceram. Soc. 82 (1999) 797.
[2] H. Thurnauer, Am. Ceram. Soc. Bull. 56 (1977) 861.
[3] G. Busch, Ferroelectrics 74 (1987) 267.
[4] W. Kanzing, Ferroelectrics 74 (1987) 285.
[5] L. E. Cross, R. E. Newnham, High-Technology Ceramics-Past, Present and Future, Amermican Ceramic Society, Westerville, (1987) p. 289.
[6] C. A. Randall, A. S. Bhalla, T. R. Shrout, L. E. Cross, Ferroelectrics Lett. 11 (1990) 103.
[7] J. Fousek, Ferroelectrics 113 (1991) 3.
[8] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics 2nd, John Wiley & Sons, Inc. 1976, p.947.
[9] V. A. Bokov and I. E. Myl'nikova, Sov. Phys. Solid State 3 (1961) 613.
[10] L. E. Cross, Ferroelectrics, 76 (1987) 1455.
[11] S. M. Pilgrim, A. E. Sutherland, S. R. Winzer, J. Am. Cerm. Soc. 73 (1990) 3122.
[12] K. Uchino, S. Nomura, Ferroelectrics Lett. 44 (1982) 55.
[13] C. H. Lu, W. S. Hwang, J. Mater. Res. 10 (1995) 2755.
[14] K. Uchino, J. Ceram. Soc. Jpn. 99 (1991) 829.
[15] K. Uchnio, L. E. Cross, R. E. Newnham, J. Appl. Phys. 52 (1980) 1455.
[16] C. A. Randall, A. S. Bhalla, J. Appl. Phy. Jpn. 29 (1990) 327.
[17] N. Setter, L. E. Cross, J. Appl. Phys. 51 (1980) 4356.
[18] B. N. Rolov, Sov. Phys. Solid State 6 (1965) 1676.
[19] G. A. Smolenskii, A. I. Agranoskaya, Sov. Phys. Solid State 1 (1959) 1429.
[20] G. Shirane, S. Sawaguchi, Y. Takagi, Phys. Rev. 84 (1951) 476.
[21] E. Sawaguchi, H. Maniwa, S. Moshino, Phys. Rev. 83 (1957) 1078.
[22] L. Gul'po, Sov. Phys. Solid State 8 (1966) 2469.
[23] E. Sawaguchi, T. Kittaka, J. Phys. Soc. Jpn. 7 (1952) 366.
[24] C. H. Lu, W. J. Hwang, Electronic Mater. 7 (2001) 138.
[25] L. M. Levinson, Electronic Ceramics, Marcel Dekker, INC. 1988, p. 260.
[26] Y. S. Lu, S. M. Leng, Z. W. Liu, Rare. Metal. Mat. Eng. 27 (1998) 15.
[27] C. H. Lu, Ceramics 12 (1993) 33.
[28] D. F. K. Hennings, J. Eur. Ceram. Soc. 21 (2001) 1637.
[29] J. C. Niepce, Actual Chimique 3 (2002) 74
[30] R. C. Buchanan, Ceramic Materials for Electronics, Marcel Dekker, INC. 1991, p. 260.
[31] C. H. Lu, Bull. Coll. Eng. N. T. U. 59 (1993) 117.
[32] H. Chazono, H. Kishi, Jpn. J. Appl. Phys. 1. 40 (2001) 5624.
[33] R. Ueyama, K Koumoto, J Ceram. Soc. Jpn. 110 (2002) 870.
[34] R. Zuo, L. Li, Z. Gui, Ceram. Int. 26 (2000) 673.
[35] S. W. Freiman, R. C. Pohanka, J. Am. Ceram. Soc. 72 (1989) 2258.
[36] Z. G. Song, Industry Materials 108 (1995) 54.
[37] S. Y. Chen, Industry Materials 108 (1995) 60.
[38] C. H. Lu, W. J. Hwang, Jpn. J. Appl. Phys. 1. 38 (1999) 5478.
[39] M. Suzuki, J, Ceram, Soc. Jpn. 103 (1996) 1088.
[40] A. Sheikholeslami, P. G. Gulak, Proceeding of the IEEE, 88 (2000) 667.
[41] C. Chaneliere, J. L. Autran, R. A. B. Devine, B. Balland, Mater. Sci. Eng. R22 (1998) 1336.
[42] J. F. Scott, F. M. Ross, C. A. P. Araujo, M. C. Scott, M. Huffman, Mater. Res. Bull 21 (1996) 33.
[43] C. H. Lu, W. J. Hwang, Solid State Tech. 12 (2000) 62.
[44] S. H. Kim, Y. S. Choi, C. E. Kim, D.Y. Yang, Thin Solid Films 325 (1998) 72.
[45] C. A. Paz, J. D. Guchiaro, M. C. Scott, L. D. McMillan, International Patent Aapplication, WO93/12542 (1993).
[46] T. R. Shrout, A. Halliyal, Am. Ceram. Soc. Bull. 66 (1987) 704.
[47] C. H. Lu, Chem. Eng.Tech. 1 (1993) 44.
[48] W. J. Hwang, C. H. Lu, Industry Mater. 11 (1999) 121.
[49] C. H. Lu, W. J. Hwang, Chem. Eng. 45 (1998) 31.
[50] A. Watanabe, H. Haneda, Y. Moriyoshi, S. Shirasaki, J. Mater. Sci. 27 (1992) 1245.
[51] F. Chaput, J. P. Boilot, M. Lejeune, R. Papiernik, L. G. Paizgraf, J. Am. Ceram. Soc. 72 (1989) 1355.
[52] S. H. Yu, J. Ceram. Soc. Jpn. 109 (2001) S65.
[53] A. I. Agranovskaya, Bull. Acad. Sci. USSR Phys. Ser. 1271 (1960).
[54] S. L. Swartz , T. R. Shrout, Mater. Res. Bull.17 (1982) 1245.
[55] S. Sharma, R. Sati, R. N. P. Choudhary, Can. J. Phys. 71 (1993) 322.
[56] M. Klee, R. Eusemnn, R. Waser, W. Brand, H. Vanhal, J. Appl. Phys. 72 (1992) 1566.
[57] R. W. Schwartz, T. J. Boyle, S. J. Lockwood, M. B. Sinclair, D. Dimos, C. D. Buchheit, Integrated Ferroeleltrics 7 (1995) 259.
[58] J. G. Hong, H. W. Song, S. B. Hong, H. Shin, K. No, J. Appl. Phys. 92 (2002) 7434.
[59] I. Kanno, S. Hayashi, T. Kamad, M. Kitagawa, T. Hirao, Jpn. J. Appl. Phys. 1, 32 (1993) 4057.
[60] Z. J. Wang, R. Maeda, M. Ichiki, H. Kokawa, Jpn. J. Appl. Phys. 1., 40 (2001) 5523.
[61] A. C. Rastogi, S. R. Darvish, P. K. Bhatnagar, Mater. Chem. Phys. 73 (2002) 135.
[62] D. A. Payne, P. G. Clem, J. Electroceram. 3 (1999) 163.
[63] H. C. Lee, W. J. Lee, Jpn. J. Appl. Phys 1 40 (2001) 6566.
[64] J. K. Lee, Y. Park, I. Chung, J. Appl. Phys 92 (2002) 2724.
[65] Y. Park, S. M. Jeong, S. I. Moon, K. W. Jeong, S. H. Kim, J. T. Song, J. S. Yi, Jpn. J. Appl. Phys. 1. 38 (1999) 6801.
[66] H. Suzuki, T. Koizumi, Y. Kondo, S. Kaneko, J. Eur. Ceram. Soc. 19 (1999) 1397.
[67] H. Hu, C. J. Peng, S. B. Krupanidhi, Thin Solid Films 223 (1993) 327.
[68] X. M. Lu, J. S. Zhu, X. F. Huang, C.Y. Lin, Y. N. Wang, Appl. Phys. Lett. 65 (1994) 2015.
[69] Electronic Industries Association (EIA) RS-198C, 1983.
[70] D. Henning, G. Rosenstein, J. Am. Ceram. Soc. 67 (1984) 249.
[71] O. Furukawa, M, Harata, M. Imai, Y. Yamashita, S. Mukaeda, J. Mater. Sci. 26 (1991) 5838.
[72] F. Uchikoba and K. Sawamura, Jpn. J. Appl. Phys. 31 (1992) 3124.
[73] F. Uchikoba, T. Ito and S. Nakajima, Jpn. J. Appl. Phys. 34 (1995) 2374.
[74] Z. Yue, X. Wang, L. Zhang, X. Yao, J. Mater. Sci. Let. 16 (1997) 1354.
[75] J. G. Baek, K. Gomi, T. Isobe, M. Senna, Mat. Sci. Eng. B-Solid, 49 (1997) 46.
[76] D. S. Mclachlan, M. Blaszkiewics, R. E. Newnham, J. Am. Ceram. Soc. 73 (1990) 2187.
[77] 邱碧秀,電子陶瓷材料,徐氏基金會,民78年, p.112.
[78] K. Shantha, K. B. R. Varma, J. Mater. Chem. 7 (1997) 1565.
[79] T. R. Shrout, S. L. Swartz, M. J. Haun, Am. Ceram. Soc. Bull. 63 (1984) 808.
[80] M. Yonezawa, Ferroelectrics 68 (1986) 181.
[81] M. Furuya, T. Mori, A . Ochi, S. Satio, S. Takashi, Jpn. J. Appl. Phys. 31 (1992) 3139.
[82] S. Takahashi, S. Miyao, S. Yoneda, M. Kuwabara, Jpn. J. Appl. Phys. 32 (1993) 4245.
[83] G. Zhilun, L. Longtu, G. Shhua, Z. Xiaowen, J. Am. Ceram. Soc. 72 (1989) 486.
[84] G. Zhilun, L. Longtu, G. Shhua, Z. Xiaowen, Ferroelectrics 101 (1990) 93.
[85] N. Ichinose, M. Kimura, Jpn. J. Appl. Phys. 30 (1991) 2200.
[86] J. H. Moon, H. M. Jang, B. D. You, J. Mater. Res. 8 (1993) 3184.
[87] M. S. Yoon, H. M. Jang, Ferroelectrics 173 (1995) 191.
[88] J. R. Belsick, A. Halliyal, U. Kumer, R. E. Newnham, Am. Ceram. Soc. Bull. 66 (1987) 664.
[89] R. Vivekanandan, T. R. N. Kutty, Ceram. Int. 14 (1988) 207
[90] G. A. Rossetti, D. J. Wantson. R. E. Newnham, J. H. Adair, J. Cryst. Growth 116 (1992) 251.
[91] P. K. Dutta, J. R. Gregg, Chem. Mater. 4 (1992) 843.
[92] H. Cheng, J. Ma, B. Zhu, Y. Chi. J. Am. Ceram. Soc. 76 (1993) 625.
[93] C. H. Lu, S. Y Lo. Mater. Res. Bull. 32 (1997) 371.
[94] C. H. Lu, W. J. Hwang. Mater. Lett. 27 (1996) 229.
[95] Joint Committee on Powder Diffraction Standard, Powder Diffraction File, Card No. 35-1482, Swathmore, PA.
[96] Joint Committee on Powder Diffraction Standard, Powder Diffraction File, Card No. 35-739, Swathmore, PA.
[97] C. H. Lu, W. J. Hwang, Ceram. Int. 22 (1996) 373.
[98] Joint Committee on Powder Diffraction Standard, Powder Diffraction File, Card No. 38-1477, Swathmore, PA.
[99] C. H. Lu , W. J. Hwang, J. Mater. Res., 14 (1999) 1364.
[100] Joint Committee on Powder Diffraction Standard, Powder Diffraction File, Card No. 34-103, Swathmore, PA.
[101] K. Uchino, F. Kojima, S. Nomura, Ferroelectrics 15 (1977) 69.
[102] M. Yokosuka, Jpn. J. Appl. Phys. 32 (1993) 4578.
[103] T. Takenaka, A. S. Bhalla, L. E. Cross, J. Am. Cream. Soc. 72 (1989) 1016.
[104] B. P. Blazhievsikii, V. A. Isupov, L. V. Kozlovskii, L. I. Mikhailova, V. I. Moskalev, N. E. Semenov, Inorg. Mater. 22 (1986) 418.
[105] C. H. Lu, W. S. Hwang, J. Ceram. Soc. Jpn. 104 (1996) 587.
[106] F. Kuchar, M. W. Valena, Phys. Satus Solid 6 (1971) 525.
[107] G. F. Chen, S. L. Fu, J. Mater. Sci. 25 (1990) 424.
[108] D. H. Suh, D. H. Lee, N. K. Kim, J. Eur. Ceram. Soc. 22 (2002) 219.
[109] Z. X. Yue, X. L. Wang, L. Y. Zhang, X. Yao, J. Mater. Sci. Lett. 16 (1997) 1354
[110] C. H. Lu, J. Y. Lin, Ceram. Inter., 23 (1997) 223.
[111] R. H. Zuo, L. T. Li, C. X. Ji, X. B. Hu, Z. L. Gui, J. Eur. Ceram. Soc. 21 (2001) 2925.
[112] Q. Li, J. Qi, Y. Wang, Z. L. Gui, L. T. Li, J. Eur. Ceram. Soc. 21(2001) 2217.
[113] H. Cai, Z. L. Gui, L. T. Li, Mater. Sci. Eng. B83 (2001) 137.
[114] C. Metzmacher, K. Albertsen, J. Am. Ceram. Soc. 84 (2001) 821.
[115] L. J. Ruan, L. T. Li, Z. L. Gui, J. Mater. Res. 13 (1998) 253.
[116] R. H. Zuo, L. T. Li, R. Z. Chen, Z. L. Gui, J. Mater. Sci. 35 (2000) 5433.
[117] C. H. Lu, D. P. Chang, J. Mater Sci. 11 (2000) 363.
[118] S. M. Gupta, A. R. Kulkarni, Mater. Chem. Phys. 39 (1994) 98.
[119] L. J. Ruan, Y. Wang, Z. L. Gui, L. T. Li, J. Mater. Sci. 8 (1997) 195.
[120] K. Tsuzuku, M. Fujimoto, J. Am. Ceram. Soc. 77 (1994) 1451.
[121]L. J. Ruan, Z. L. Gui, L. T. Li, J. Mater. Sci. Lett. 16 (1997) 1020.
[122] J. H. Oh, J. H. Lee, S. H. Cho, Ferroelectrics, 158 (1994) 241.
[123] X. Y. Zhao, B. J. Fang, H. Cao, Y. P. Guo, H. S. Luo, Mat. Sci. Eng. B-Solid 96 (2002) 254.
[124] J. P. Guha, J. Eur. Cerma. Soc. 23 (2003) 133.
[125] Z. Surowiak, M. F. Kupriyanov, A. E. Panich, R. Skulski, J. Eur. Ceram. Soc. 21 (2001) 2783.
[126] C. H. Lu, C. Y. Wen, J. Eur. Ceram. Soc. 18 (1998) 1599..
[127] B. H. Kim, O. Sakurai, N. Wakiya, N. Mizutani, Mater. Res. Bull. 32 (1997) 451.
[128] W. L. McCabe, J. C. Smith, P. Harriot, Unit Operations of Chemical Engineering 4th, McGraw-Hill, New York, 1993, p. 962.
[129] J. S. Reed, Principles of Ceramics Processing 2nd, John Wiley & Sons, Now York, 1995, p. 321.
[130] B. D. Cullity, S. R. Stock, Elements of X-ray diffraction 3rd, Prentice Hall, Inc. 2001, p. 170.
[131] F. R. Anderson, H.C. Ling, Ceramic Dielectric: Compostion, Processing, and Properties, 1990, p.136.
[132] S. F. Wang, W. Hueber, J. Am. Ceram. Soc. 74 (1991) 1349.
[133] R. R. Tumala, J. Am. Ceram. Soc. 74 (1991) 896.
[134] J. G. Pepin, W. Borland, J. Am. Ceram. Soc. 72 (1989) 2287.
[135] S. F. Wang, W. Hueber, J. Am. Ceram. Soc. 76 (1993).
[136] A. C. Caballero, E. Nieto, P. Duran, C. Moure, J. Mater. Sci. 32 (1997) 3257.
[137] Y. Sato, H. Kanai, and Y. Yamashita, J. Am. Ceram. Soc. 79 (1996) 261.
[138] M. Lejeune and J. P. Boilot, Mater. Res. Bull. 20, (1985) 493.
[139] M. Lejeune and J. P. Boilot, Ceram. Int. 8 (1982) 99.
[140] P. Papet, J. P. Dougherty and T. R. Shrout, J. Mater. Res. 5 (1990) 2902.
[141] E. F. Alberta, S. Bhalla, Mater. Lett. 54 (2002) 47.
[142] Joint Committee on Powder Diffraction Standard, Powder Diffraction File, Card No. 4-783, Swathmore, PA.
[143] Joint Committee on Powder Diffraction Standard, Powder Diffraction File, Card No. 27-1199, Swathmore, PA.
[144] R. Zuo, L. Li, Z. Gui, C. Ji, X. Hu, Mat. Sci. Eng. B-Solid 83 (2001) 152.
[145] Joint Committee on Powder Diffraction Standard, Powder Diffraction File, Card No. 43-1024, Swathmore, PA.
[146] S. F. Wang and W. Hueber, J. Am. Ceram. Soc. 75(1992) 2339.
[147] S. S. Cole, J. Am. Ceram. Soc. 68 (1985) C106.
[148] K. Nagashima, T. Himeda, A. Kato, J. Mater. Sci. 26 (1991) 2477.
[149] Joint Committee on Powder Diffraction Standard, Powder Diffraction File, Card No. 47-1049, Swathmore, PA.
[150] J. F. Scott, C. A. P. Araujo, Science 246 (1989) 1400.
[151] O. Auciello, J. F. Scott, R. Ramesh, Phys. Today 51 (1998) 22.
[152] A. Kingon, Nature 401 (1999) 658.
[153] G. R. Fox, F. Chu, T. Davenport, J. Vac. Sci. Tech. B19 (2001) 1967.
[154] M. Okuyama, Y. Hamakawa, Ferroelectrics 63 (1985) 243.
[155] A. Mansingh, Ferroelectrics 102 (1990) 69.
[156] T. Hata, S. Kawagoe, W. Zhang, K. Saaki, Y. Yoshioka, Vaccum 51 (1998) 665.
[157] J. Zeng, C. Lin, J. Li, K. Li, J. Mater. Res. 14 (1999) 2712.
[158] Z. Wei, K. Yamashita, M. Okuyama, Jpn. J. Appl. Phys. 40 (2001) 5539.
[159] Y. Zhu, J. Zhu, Y. J. Song, S. B. Desu, Appl. Phys. Lett. 73 (1998) 1958.
[160] M. Aratani, T. Ozki, H. Funakubo, Jpn. J. Appl. Phy. 40 (2001) L343.
[161] S. Horita, M. Aikawa, T. Naruse, Jpn. J. Appl. Phy. 39 (2000) 4680.
[162] I. D. Kim, H. G. Kim, Jpn. J. Appl. Phys. 40 (2001) 2357.
[163] B. Y. Zhang, T. Iijima, G. He, N. Sanada, J. Ceram. Soc. Jpn. 109 (2001) 293.
[164] A. C. Rastogi, S. R. Darvish, P. K. Bhatnagar, Mater. Chem. Phys. 73 (2002) 135.
[165] B. P. Zhang, T. Iijima, G. He, N. Sanada, J. Ceram. Soc. Jpn. 109 (2001) 293
[166] A. T. Chien, J. S. Speck, F. F. Lange, J. Mater. Res. 12 (1997) 1176.
[167] T Kanda,M. K. Kurosawa, H. Yasui, T. Higuchi, Sensor Actuat. A-phys. 89 (2002) 16.
[168] Y. Fujimori, T. Nakamura, H. Takasu, Jpn. J. Appl. Phys. 38 (1999) 5346.
[169] B. Yao, F. S. Li, X. M. Lin, B. Z. Ding, W. H. Su, Z. Q. Hu, J. Non-Cryst. Sol. 217 (1997) 317.
[170] S. C. Liao, W. E. Mayo, K. D. Pae, Acta Mater. 45 (1997) 4027.
[171] K. W. Seo, J. K. Oh, J. Ceram. Soc. Jpn. 108 (2000) 691.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 石明卿(1989):國小學生環境知識與態度之研究。花蓮師院學報,3期,頁263-318。
2. 汪靜明(2000):學校環境教育的理念與原理,環境教育季刊43期,頁18-34。
3. 林生傳(1997):我國學生概念發展的水準與特徵研究。教育學刊13期,頁47-82。
4. 侯錦雄、郭彰仁(1998):公園遊客之環境態度與不當行為管理策略認同之關係。戶外遊憩研究,11(4),頁17-42。
5. 施明賜(1993):水污染對社會之影響及防治方法。人與地,頁33-35。
6. 洪木利(1979):高雄地區國中物理科教師教學特性比較研究。高雄師院學報,7。
7. 張子超(1995):環保教師對新環境典範態度分析。環境教育季刊,26期,頁37-46。
8. 陳英豪(1977):我國青少年道德判斷之發展及其影響之因素。高雄師院學報第六期。
9. 陳瑤湖(1991):水污染與水產養殖。漁友月刊,15卷1期,頁22-25。
10. 楊冠政(1992):環境行為相關變項之類別與組織。國立台灣師範大學環境教育季刊15期。
11. 楊志強、洪文東(2002):教學對概念改變之研究--以國小五年級「電磁鐵」單元為例。屏師科學教育,15期,頁54-67。
12. 靳知勤(1994a):從環境知識、態度與行為間的關係-論環境教育目標之達成。環境教育季刊,23期,頁31-39。
13. 楊國屏(民85)。輔助溝通系統。科學月刊,11,925-935頁。
 
系統版面圖檔 系統版面圖檔