(3.237.20.246) 您好!臺灣時間:2021/04/14 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐維澤
研究生(外文):Wei-Tse, Hsu
論文名稱:奈米釔鋁柘榴石螢光粉之製備及同步輻射分析
論文名稱(外文):Synthesis of Nano-sized Yttrium Aluminum Garnet Phosphors and Characterization by Using Synchrotron Radiation Facilities
指導教授:呂宗昕
指導教授(外文):C. H. Lu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:183
中文關鍵詞:Yttrium aluminum garnetPhosphorSynchrotron radiationSol-gel synthesisNano
相關次數:
  • 被引用被引用:1
  • 點閱點閱:189
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
顯示器可說是現代資訊生活中,最重要的人機介面之一。隨著科技的進展,各種新式顯示技術成為重要的研究焦點,電漿顯示器與場發射顯示器由於具有重量輕、體積小、廣視角、高對比及製程簡單等優點,因而成為最具發展潛力的顯示技術。螢光材料由於具有可吸收特定能量並進而放出可見光的特性,因此成為新式顯示器全彩化的關鍵材料。
本論文中以兩種不同之溶膠-凝膠製程合成銪添加之釔鋁柘榴石紅色螢光粉,所合成之螢光粉體則以真空紫外光及電子束激發下之放射光譜驗證其於電漿顯示器及場發射顯示器上之應用。本論文的第一部分中使用金屬硝酸鹽、檸檬酸及乙二醇進行溶膠-凝膠反應,並可在900℃下得到單相且均勻分散之奈米級YAG: Eu3+螢光粉(~50 nm)。隨著熱處理溫度的上升,其螢光強度也隨之上升。在Eu3+添加量超過5%時,則可以觀察到濃度消光的現象。YAG: Eu3+在真空紫外光波段之激發光譜則以同步輻射進行研究。其光譜可解析為數個不同之激發峰,包含主體晶格能隙、激子、Eu3+之4f-5d躍遷、以及charge transfer band。非計量比對YAG: Eu3+螢光性質之影響亦在本研究中探討。單相之YAG: Eu3粉體可在計量比及釔離子缺乏的情況下得到,且其螢光強度隨著釔離子的缺乏而上升。Rietveld精算法亦在此用以研究非計量比對於YAG: Eu3+結構之影響。
本論文的第二部分則利用溶膠-凝膠熱裂解法合成尺寸可調之奈米級YAG: Eu3+螢光粉體。研究中使用PVA與尿素作為混合之燃料系統,並探討燃料含量對所得粉體外型、粒徑之影響。分散良好之YAG: Eu3+奈米級螢光粉可在約1000℃下得到,遠低於傳統故相法之1600℃。研究中亦發現本製程所得之螢光粉,其螢光性質隨著製程條件的變化而有明顯的差異,特別是對於220 nm附近之激發現象有顯著的影響。比較兩溶膠-凝膠製程,則發現在同條件下兩者所合成的粉體結晶性、粒徑及外型皆相似,但使用檸檬酸及乙二醇之製程所合成之粉體則具有較高之螢光強度,應為一較佳之粉體製程。
Display is one of the most important human-machine interfaces in our daily life. As improvement of technology, and various new displays have been developed. Plasma display panels and field emission displays are the most promising candidates for their low weight, small volume, large view angle, high contrast, and simple manufacture process. Phosphors, which absorb certain energy and emit the energy with radiation, play an important role in these newly developed displays.
In this thesis, europium ions doped yttrium aluminum garnet, a kind of red phosphors, was synthesized via two different sol-gel processes. The application of YAG: Eu3+ phosphor on both plasma display panels and field emission displays as red component was examined through the measurement of emission spectra under the excitation of vacuum ultra-violet radiation and electron beams. In the first part, a sol-gel process employing citric acid and ethylene glycol as polymerizing agent was developed. The synthesis temperature of phase-pure YAG: Eu3+ phosphor was reduced to 900℃, and well-dispersed YAG: Eu3+ nano-particles (~50nm) were obtained in this temperature. The luminescent intensity of sol-gel prepared YAG: Eu3+ increased with the rise of calcined temperature due to the increase of the crystallinity. The concentration quenching phenomenon was observed for Eu3+ concentration higher than 5%. The excitation spectra in VUV range were recorded via applying synchrotron radiation facilities. These spectra were deconvoluted into several peaks, because of the host band-edge absorption, autolocaized exciton absorption, 4f-5d transition of Eu3+, and charge transfer band. The effect of nonstiochiometry on photoluminescence properties of YAG: Eu3+ was also investigated. Phase-pure YAG: Eu3+ was found in both yttrium deficient and stoichiometric cases. The emission spectra revealed that the emission intensity raised as the deficient of yttrium ions increased. Rietveld refinement method was employed to analyze the effect of nonstiochiometry on the structure of YAG: Eu3+ phosphors.
In the second part of this thesis, Eu3+ doped yttrium aluminum garnet nanophosphors (YAG: Eu3+) with wide ranging size tunability (5- 50 nm) were prepared via a sol-gel polymer thermal-pyrolysis method employing a new combination of fuel system involving urea and polyvinyl alcohol (PVA). Well-dispersed nanoparticles were prepared at a much lower temperature of about 1000°C against 1600℃ for the solid-state reaction route. The particle size and morphology of the synthesized powders were found to have critical dependence on the oxidizer (metallic nitrates) to fuel ratio. The fluorescence properties of the prepared YAG: Eu3+ phosphors have profound dependence on the preparation conditions, in particular for excitations near the band edge regions (~ 220 nm).
Contents
摘要
Abstract
Contents…………………………………………………………………i
List of Figures…………………………………………………………v
List of Tables………………………………………………………..…xi
Chapter 1 Introduction……………………………………………….1
1.1 Preface……………………………………………………………1
1.2 New Display Technology — Plasma Display Panels and Field Emission Display…………………………………………………2
1.2.1 Review of Display Technology…………………………..3
1.2.2 Plasma Display Panels (PDP)…………………………….7
1.2.3 Field Emission Display (FED)…………………………...8
1.2.4 Requirements of Phosphors for PDP and FED…………...9
1.3 Phosphor……………………………………………………...…11
1.3.1 Classification of Luminescence…………………………12
1.3.2 Constituents of Phosphor………………………………..13
1.3.3 Design of Phosphor……………………………………..15
1.3.4 Application of Phosphor………………………………...16
1.4 Luminescence Theory…………………………………………..16
1.4.1 Selection Rules………………………………………….17
1.4.2 Energy Dissipation in Phosphors……………………….18
1.4.3 Configurational Coordinate Diagram………………...…20
1.4.4 Stokes Shift……………………………………………..22
1.4.5 Localized and Non-Localized Centers………………….23
1.4.6 The Rare Earth Ions……………………………………..25
1.4.7 4fn-15d1 States and Charge Transfer States……………...26
1.4.8 Energy Transfer Process………………………………...28
1.4.9 Emission Characteristics of Eu3+ Ions — The f-f Transition………………………………………………..29
1.4.10 Crystal-Field Theory and Stark Splits…………………..30
1.4.11 The Concentration Quenching Phenomenon……………32
1.4.12 Quantum Yield…………………………………………..33
1.5 Introduction to Yttrium Aluminum Garnet……………………..34
1.5.1 Structure of Yttrium Aluminum Garnet………………...34
1.5.2 Spectroscopy of YAG: Eu3+……………………………..35
1.5.3 Synthesis Methods of YAG phosphor…………………..36
1.6 Research Objective……………………………………………...44
Chapter 2 Experimental Procedure………………………………69
2.1 Solid-State Method to Synthesis YAG: Eu3+ Phosphor………...69
2.2 Synthesis of YAG: Eu3+ Phosphor via a Sol-Gel Process Employing Citric Acid and Ethylene Glycol………….………69
2.3 Synthesis of YAG: Eu3+ Phosphor via a Sol-Gel Pyrolysis process………………………………………………………...71
2.4 Analysis Technique……………………………………………..71
2.5 Measurements of Photoluminescence Properties with Synchrotron Radiation………………………………………...72
2.6 Calculation of Quantum Yield………….………………………74
2.7 Rietveld Refinement Method…………………………………...75
Chapter 3 Investigation on the Photoluminescence Properties of Y3Al5O12: Eu3+ Phosphors with Synchrotron Radiation………………………………………………...84
3.1 Solid-State Preparation of YAG: Eu3+ Phosphor……………….85
3.2 Luminance Study of YAG: Eu3+ Phosphor Prepared by Sol-Gel Process………………………………………………………...87
3.2.1 Synthesis of YAG: Eu3+ via Sol-Gel Process…………….87
3.2.2 Luminescence Studies of YAG: Eu3+ phosphors………...89
3.3 Effects of Europium Doping Amount on Luminance and Investigation of Excitation Processes…………………………94
3.3.1 Emission Characteristics of YAG: Eu3+ with Different Concentrations of Eu3+………………………………………...94
3.3.2 Investigation of Excitation processes of YAG: Eu3+……96
3.4 Effect of Nonstoichiometry on Photoluminescence of YAG: Eu3+ and Rietveld Refinement Analysis…………………………..101
3.4.1 Crystal Structure of Nonstoichiometric YAG: Eu3+…...101
3.4.2 Emission Characteristics of Nonstoichiometric YAG: Eu3+ Phosphors…………………………………………………….104
3.4.3 Excitation Analyses of Nonstoichiometric YAG: Eu3+ Phosphors…………………………………………………….105
3.5 Summary………………………………………………………108
Chapter 4 Fluorescence Properties of Y3Al5O12: Eu3+ Phosphor Synthesized Using a Sol-Gel Pyrolysis Process………………………………………………….154
4.1 The Sol-Gel Pyrolysis Process………………………………...155
4.2 Preparation of YAG: Eu3+ phosphors via the sol-gel pyrolysis process………………………………………………………….156
4.3 Microstructures of YAG: Eu3+ phosphors prepared via the sol-gel pyrolysis process……………………………………………….157
4.4 Luminescence transition in YAG: Eu3+ phosphors……………159
4.5 Summary………………………………………………………163
Chapter 5 Conclusion……………………………………………...175
Reference…………………………………………………………….179
Reference
1. P. J. Collings, and M. Hird, Introduction to liquid crystal chemistry and physics, Chinese edition, pp. 1, Taylor &Francis Ltd., 1997.
2. H. Yamamoto, T. Sato, S. Muguruma, Y. Hayasaki, Y. Nagai, Y. Shimizu, and N. Nishida, Opt. Rev., 9 [6], 244 (2002).
3. Y. Yoshida, A. Ishizuka, and H. Makishima, Mater. Chem. Phys., 40 [4], 267 (1995).
4. Y. Yamauchi, H. Kishishita, M. Takeda, T. Inoguchi, and T. Mito, Amer. Astro. Soc, Sci. Tech. Series, 352 (1974).
5. P. Bailey, D. Carkner, and X. Wu, J. App. Phys., 81 [2], 931 (1997).
6. K. Betsui, F. Namiki, Y. Kanazawa, and H. Inoue, Fujitsu Sci. Tech. J., 35 [2], 229 (1999).
7. C. H. Kim, I. E. Kwon, C. H. Park, Y. J. Hwang, H. S. Bae, B. Y. Yu, C. H. Pyun, and G. Y. Hong, J. Alloys Compd., 311, 33 (2000).
8. A. A. Talin, K. A. Dean, and J. E. Jaskie, Solid State Elec., 45, 963 (2001).
9. J. M. Kim, W. B. Choi, N. S. Lee, and J. E. Jung, Diamond and Related Materials, 9, 1184 (2000).
10. E. T. Goldburt, V. A. Bolchouchine, B. N. Levonovitch, and N. P. Sochtine, J. Vac. Sci. Technol. B, 17 [2], 765 (1999).
11. K. S. Sohn, S. S. Kim, and H. D. Park, Appl. Phys. Lett., 81 [10], 1759 (2002).
12. P. H. Holloway, T. A. Trottier, J. Sebastian, S. Jones, X. M. Zhang, J. S. Bang, B. Abrams, W. J. Thomas, and T. J. Kim, J. App. Phys., 88 [1], 483 (2000).
13. T. Justel, and H. Nikol, Adv. Mater., 12 [7], 527 (2000).
14. Y. Nakanishi, 12th International Vacuum Microelectronics Conference (1999).
15. G. Blasse, and B. C. Grabmaier, Luminescent Materials, Springer-Verlag (1994).
16. S. Shionoya, and W. M. Yen (ed.), Phosphor Handbook, Chap. 2, CRC Press, Washington D. C. (1998).
17. K. Nassau, The Physics and Chemistry of Color, John Wiley & Sons, New York (1983).
18. P. Goldberg et al., Luminescence of Inorganic Solids, Academic Press (1966).
19. D. A. Skoog, and J. J. Leary, Principles of instrumental analysis, Saunders College Pub (1992).
20. R. C. Ropp, Luminescence and the Solid State, Elsevier (1991).
21. G. Blasse, Int. Revs. Phys. Chem., 11, 71 (1992).
22. B. Henderson, Optical Spectroscopy of Inorganic Solids, Clarendon Oxford (1989).
23. R. P. Wayne, Principles and Applications of photochemistry, Oxford University Press (1988).
24. J. A. DeLuca, J. Chem. Educ., 57 [8], 541 (1980).
25. P. W. Atkins, Physical Chemistry, 4th edn., Oxford University Press (1990).
26. J. R. Lo, Phase Development, Luminescence Properties and Electron Paramagnetic Spectrum of the Sol-Gel Derived Y2O3-Al2O3 system, National Chiao-Tung Univ. (1998).
27. Y. J. Gao, Preparation and Luminescence Properties of Manfanese Doped ZnS Nanoparticles, Tatung University (2001).
28. W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, J. Chem. Phys., 90, 343 (1989).
29. R. Ozawa, Bunsekikiki, 6, 108 (1968).
30. H. E. Hoefdraad, J. Inorg. Nucl. Chem., 37, 1971 (1975).
31. G. Blasse, Structure and Bonding, 86, 153 (1991).
32. D. B. Brown (ed.) Mixed-valence Compounds, Reidel, Dordrechr (1980).
33. G. Blasse, and A. Bril, Philips Tech. Rev., 32, 304 (1970).
34. M. Sekita, J. Lumin., 22, 335 (1981).
35. E. Nakazawa, and S. Shionoya, J. Phys. Soc. Japan, 28, 1260 (1970).
36. C. de Mello Donega, A. M. Simas, and G. F. de Sa, J. Alloys Compds., 250, 422 (1997).
37. G. F. de Sa, O. L. Malta, C. de Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. Da Silva Jr., Coord. Chem. Rev., 196, 165 (2000).
38. J. R. Lo, and T. Y. Tseng, Mater. Chem. Phys., 56, 56 (1998).
39. Y. Mizutani, H. Yasuda, I. Ohnaka, and Y. Waku, Mater. Trans., 42 [2], 238 (2001).
40. O. Fabrichnaya, H. J. Seifert, and T. Ludwig, Scand J. Metal., 30, 175 (2001).
41. J. L. Caslacsky, and D. J. Viechnicki, J. Mater. Sci., 15, 1709 (1980).
42. D. A. Pawlak, K. Wozniak, Z. Frukacz, T. L. Barr, D. Fiorentino, and S. Seal, J. Phys. Chem. B, 103, 1454 (1999).
43. T. Hahn, International Tables for Crystallography, International Union of Crystallography by Kluwer Academic Publishers (1995).
44. Y. N. Xu, and W. Y. Ching, Phys. Rev. B, 59 [16], 10530 (1999).
45. I. Warshaw, and R. Roy, J. Am. Ceram. Soc., 42, 434 (1959).
46. F. Euler, and J. A. Bruce, Acta Crystallogr., 19, 971 (1965).
47. E. Price, Acta Crystallogr. B, 24, 1968 (1982).
48. T. S. Chernaya, Sov. Phys, Crystallogr., 34, 778 (1984).
49. S. K. Ruan, J. G. Zhou, A. M. Zhong, J. F. Duan, X. B. Yang, and M. Z. Su, J. Alloys. Comps., 72, 72 (1998).
50. X. Guo, and K. Sakurai, Jpn. J. Appl. Phys., 39, 1230 (2000).
51. Y. C. Kang, I. W. Lenggoro, S. B. Park, and K. Okuyama, J. Phys. Chem. Solids, 60, 1855 (1999).
52. Y. C. Kang, Y. S. Chung, and S. B. Park, J. Am. Ceram. Soc., 82 [8], 2056 (1999).
53. Y. C. Kang, I. W. Lenggoro, S. B. Park, and K. Okuyama, Mater. Res. Bull., 35, 789 (2000).
54. M. Inoue, H. Otsu, H. Kominami, and T. Inui, J. Am. Ceram. Soc., 74 [6], 1452 (1991).
55. M. Inoue, H. Otsu, H. Kominami, and T. Inui, J. Mater. Res., 13 [4], 856-860 (1998).
56. Y. Hakuta, K. Seino, H. Ura, T. Adschiri, H. Takizawa, and K. Arai, J. Mater. Chem., 9, 2671 (1999).
57. Y. D. Ivakin, M. N. Danchevskaya, and G. P. Muravieva, High Pressure Research, 20 [1-6], 87 (2001).
58. I. Matsubara, M. Paranthaman, S. W. Allison, M. R. Cates, D. L. Bexhears, and D. E. Holcomb, Mater. Res. Bull., 35, 217 (2000).
59. J. G. Li, T. Ikegami, J. H. Lee, T. Mori, and Y. Yajima, J. Euro. Ceram. Soc., 20, 2395 (2000).
60. J. G. Li, T. Ikegami, J. H. Lee, T., and T. Mori, J. Mater. Res., 15 [11], 2375 (2000).
61. J. G. Li, T. Ikegami, J. H. Lee, T., and T. Mori, J. Mater. Res., 15 [7], 1514 (2000).
62. N. Matsushita, N. Tsuchiya, and K. Nakatsuka, J. Am. Ceram. Soc., 82 [8], 1977 (1999).
63. J. G. Li, T. Ikegami, J. H. Lee, T., T. Mori, and Y. Yajima, J. Mater. Res., 15 [9], 1864 (2000).
64. J. Y. Choe, D. Ravichandran, S. M. Blomquist, K. W. Kirchner, E. W. Forsythe, and D. C. Morton, J. Lumin., 93, 119 (2001).
65. J. Y. Choe, D. Ravichandran, S. M. Blomquist, D. C. Morton, K. W. Kirchner, M. H. Ervin, and U. Lee, Appl. Phys. Lett., 78 [24], 3800-3802 (2001).
66. M. K. Cinbulk, J. Am. Ceram. Soc., 83 [5], 1276-1278 (2000).
67. Q. Li, L. Gao, and D. Yan, Mater. Chem. Phys., 64, 41-44 (2000).
68. C. H. Park, S. J. Park, B. Y. Yu, H. S. Bae, C. H. Kim, and C. H. Pyun, J. Mater. Sci. Lett., 19, 335-338 (2000).
69. L. E. Shea, J. McKittrick, and O. A. Lopez, J. Am. Ceram. Soc., 79 [12], 3257-3265 (1996).
70. J. McKittrick, L. E. Shea, C. F. Bacalski, and E. J. Bosze, Displays, 19, 169-172 (1999).
71. S. Shikao, and W. Jiye, J. Alloys Compd., 327, 82-86 (2001).
72. C. H. Lu, and R. Jagannathan, Appl. Phys. Lett., 80 [19], 3608-3610 (2002).
73. C. H. Lu, H. C. Hong, and R. Jagannathan, J. Mater. Sci. Lett., 21 [19], 1489-1492 (2002).
74. D. E. Husk, C. Tarrio, E. L. Benitez, and S. E. Schnatterly, J. Opt. Soc. Am. B, 9 [1], 152-56 (1992).
75. W. Park, R. Y. Lee, C. J. Summers, Y. R. Do, and H. G. Yang, Mater. Sci. Eng. B, 78, 28-31 (2000).
76. V. V. Nikesh, and S. Mahamuni, Semicond. Sci. Tech., 16, 687-690 (2001).
77. H. M. Rietveld, J. Appl. Crystallogr, 2, 65-71 (1969).
78. R. A. Young (ed.), The Rietveld Method, Oxford Science Publications (1995).
79. Powder Diffraction File, Card No. 33-0040, Joint committee on powder diffraction standards, Swarthmore, PA.
80. B. G. Wybourne, Spectroscopic Properties of Rare-Earths, Interscience New York (1965).
81. D. Ravichandran, R. Roy, A. G. Chakhovskoi, C. E. Hunt, W. B. White, and S. Erdei, J. Lumin. 71, 291 (1997).
82. W. C. Nieupoort and G. Blasse, Proc. John Hopkins Univ. Conf., Inter. Science New York, 161 (1967).
83. J. A. Koningsten, Phys. Rev., 136 [3A], 717 (1964).
84. M. Sekita, H. Haneda, S. Shirasaki, and T. Yanagitani, J. Appl. Phys., 69 [6], 3709-3718 (1991).
85. T. Justel, J. C. Krupa, and D. U. Wiechert, J. Lumin., 93, 179-189 (2001).
86. A. Baciero, K. J. McCarthy, M. A. Acedo, L. Rodriguez-Barquero, J. Avila, Y. Huttel, V. P. Dieste, M. C. Asensio, and B. Zurro, J. Synch. Rad., 7, 215-220 (2000).
87. C. W. Thiel, H. Cruguel, Y. Sun, G. J. Lapeyre, R. M. Macfarlane, R. W. Equall, and R. L. Cone, J. Luim., 94-95, 1-10 (2001).
88. V. V. Haruyubyan, V. A. Gevorkyan, E. A. Hakhverdyan, A. K. Babayan, and V. N. Makhov, Phys. Stat. Sol., 167, 237 (1998).
89. A. Mayolet, J. C. Krupa, I. Gerard, and P. Martin, Mater. Chem. Phys., 31 [1-2], 107-109 (1992).
90. J. C. Krupa, and M. Queffelec, J. Alloys Compds., 250, 287 (1997).
91. E. Loh, Phys. Rev., 147 [1], 332 (1966).
92. P. Dorenbos, J. Lumin., 91, 91-106 (2000).
93. Y. H. Zhou, J. Lin, S. B. Wang, and H. J. Zhang, Opt. Mater., 20, 13-20 (2002).
94. Q. Su, J. Lin, and B. Li, J. Alloys Compds., 225, 120 (1995).
95. Powder Diffraction File, Card No. 33-0041, Joint committee on powder diffraction standards, Swarthmore, PA.
96. Powder Diffraction File, Card No. 34-0368, Joint committee on powder diffraction standards, Swarthmore, PA.
97. H. Wang, and L. Gao, Ceram. Inter., 27, 721-723 (2001).
98. H. Yamane, and M. Shimada, J. Solid St. Chem., 141, 466-474 (1998).
99. M. C. Wilding, C. J. Benmore, and P. F. McMillan, J. Non-Cryst. Solids, 297, 143-155 (2002).
100. L. Vastlechko, A. Matkovskii, D. Savytskii, A. Suchocki, and F. Wallrafen, J. Alloys Compds., 291, 57-65 (1999).
101. S. Liu, and Q. Su, J. Alloys Compds., 255, 102-105 (1997).
102. E. Antic-Fidancev, J. Holsa, M. Lastusaari, and A. Lupei, Phys. Rev. B, 64, 195108 (2001).
103. S. Zhang, Y. Hou, H. Fujii, T. Onishi, M. Kokubu, M. Obata, H. Tanno, T. Kono, and H. Uchiike, Jpn. J. Appl. Phys., 42, 477-480 (2003).
104. J. J. Kingsley and L. R. Pederson, Mater. Res. Soc. Sym. Proc., 296, 361 (1993).
105. G. Blasse, J. Solid. St. Chem., 14, 181 (1975).
106. P. Pramanik, Bull. Mater. Sci., 18, 819 (1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔