(100.25.42.117) 您好!臺灣時間:2021/04/21 14:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡子萱
研究生(外文):TzuHsuan Tsai
論文名稱:化學機械研磨銅之研磨液與研磨模式研究
論文名稱(外文):The Study of Alumina Slurries and Polishing Model for Cu Chemical Mechanical Polishing
指導教授:顏溪成顏溪成引用關係
指導教授(外文):Yen Shi-Chern
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:91
語文別:中文
論文頁數:284
中文關鍵詞:化學機械研磨阻障層氧化鋁研磨液極化曲線電化學阻抗譜潤濕性表面電位反應動力學模式
外文關鍵詞:Chemical mechanical polishingCopperBarrierAluminaSlurryPolarization curveElectrochemical impedance spectroscopyWettabilityZeta potentialModel of reaction kinetics
相關次數:
  • 被引用被引用:11
  • 點閱點閱:1290
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:285
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,吾人探討了不同氧化鋁研磨液組成對Cu CMP之影響,包括了表面鈍化、腐蝕等反應,以及其與機械作用間的關係。實驗結果顯示表面鈍化膜的形成可降低腐蝕速率,並緩衝機械應力,故有助於達成平坦化。其中以氧化劑混合HBTA後所能產生的保護性最佳;加入螯合劑則可提昇銅的移除速率,使其值達600 nm/min以上。而在含有過氧化氫型氧化劑的研磨液中混合NH4OH、檸檬酸或甘醇酸後,銅和鉭系阻障層間有較小的流電偶合作用。此外,阻抗分析提供了Cu CMP期間電化學機制的了解。研究顯示以固定相角元件取代電容來模擬銅的界面反應更能貼近實驗結果,而且電容的校正參數可反應該元件的不理想態。數據顯示電雙層電容校正參數與銅表面粗糙度有正相關性,可作為Cu CMP效能的指標,其中使用5 w% U-H2O2 +1 w% NH4OH + 0.1 w% HBTA研磨液研磨銅後可獲得僅2.64 nm的表面粗糙度,並且其電雙層電容校正參數值達1.0。當在研磨液中添加微量的非離子型界面活性劑後,銅表面與溶液間的潤濕性增加,進而磨後平坦度提昇,並會減少粒子殘留。實驗發現加入檸檬酸、草酸以及甘醇酸能縮短銅氧化物以及α-Al2O3粒子間帶異性電荷的pH範圍,進而大幅減少粒子污染。綜合5 w% U-H2O2 +1 w% NH4OH + 0.1 w% HBTA + 0.1 M GCA + 0.01 w% Triton DF-16研磨液研磨有圖刻的銅表面後,結果盤凹與缺陷均減少。此外,吾人亦提出了一包含表面鈍化、分解、溶解、螯合和磨損等反應之動力學模式來分析研磨液組成對移除速率的影響,結果顯示模擬與實驗數據有相同的趨勢。
In this study, the effect of alumina slurries on Cu CMP has been investigated. It includes passivation, corrosion reactions and mechanical action. It has been found that the corrosion rate is reduced and the mechanical stress is cushioned by the formation of passive film on the surface, and it is helpful to planarization. For the alumina slurries studied, oxidants mixed with HBTA provided the best protection for copper, and chelating agents could enhance copper removal rate. Moreover, slurries with hydrogen peroxide-type oxidants mixed with NH4OH, citric acid or glycolic acid can result in smaller galvanic couple action between copper and tantalum-series barrier. In addition, electrochemical behaviors of Cu CMP could be studied by impedance analysis. By use of the constant phase element instead of the capacitor, the impedance corresponding to the equivalent circuits could be simulated more accurately. Meanwhile, it was found that the surface roughness depended on the adjusted parameter of double layer capacitance, also regarded as an index of Cu CMP performance. After nonionic surfactants were added into slurries, the wettability between copper surface and solution could be increased. It not only enhanced the planarity, but also reduced the particle contamination. Also the experimental results showed adding citric acid, oxalic acid or glycolic acid could shorten the pH range of attractive force between copper oxide and α-Al2O3 and thus brought a cleaner surface. By use of 5 w% U-H2O2+1 w% NH4OH+0.1 w% HBTA+0.1 M GCA+ 0.01 w% Triton DF-16 slurry, copper patterns showed less dishing and defects after CMP. Finally, a polishing kinetic model was proposed for simulating the removal rate, influenced by passivation, dissolution, chelating and abrasion action. The simulated results showed a good agreement with the experimental results.
第一章 緒論
1-1金屬化製程的簡介與發展 1-2銅金屬化製程的開發與挑戰 1-3化學機械研磨(CMP) 1-4 Cu CMP的研究和挑戰 1-5 CMP後清洗簡介 1-6研究動機以及目的
第二章 電化學方法研究金屬化學機械研磨
2-1簡介與文獻回顧
2-2金屬與研磨溶液間的E-pH圖建立
2-3金屬CMP電化學研究系統與腐蝕動力論
2-4金屬腐蝕鈍化膜與抑制劑的角色
2-5交流阻抗技術原理
第三章 化學機械研磨金屬銅以及阻障層
3-1研磨液的組成分析與要素
3-2實驗設備和方法
3-3 pH值對Cu CMP的影響
3-4研磨液各項組成對Cu CMP的影響
3-5銅與鉭系列阻障層的腐蝕作用
3-6結論
第四章 Cu CMP之阻抗分析與等效電路模式建立
4-1實驗設備和方法
4-2銅與Urea-H2O2研磨液界面間的阻抗分析
4-3結論
第五章 研磨液物性對研磨效能與磨後清洗的影響
5-1簡介與文獻回顧
5-2實驗設備和方法
5-3添加劑對研磨液之物性影響
5-4研磨效能及磨後清洗的改善
5-5結論
第六章 Cu CMP之反應動力學與模擬
6-1簡介與文獻回顧
6-2化學反應程序
6-3平均機械磨除程序
6-4 Cu CMP之移除模式與速率
6-5結論
第七章 結論
Adamson, A. W., Physical Chemistry of Surfaces, 4th ed., John Wiley & Sons, Inc. (1982).
Aksu, S. and Doyle, F. M., “The Role of Ethylenediaminetetraacetic Acid (EDTA) and Glycine in Chemical Mechanical Planarization (CMP) of Copper,” Proceedings of the Second International Conference on Processing Materials for Properties (2000) 225-230.
Al-Kharafi, F. M. and Ateya, B. G., “Effect of Sulfides on the Electrochemical Impedance of Copper in Benzotriazole-Inhibited Media,” J. Electrochem. Soc., 149, 6 (2002) B206-B210.
Alves, V. A., da Silva, L. A. and Boodts, J. F. C., “Surface Characterisation IrO2/TiO2/CeO2 Oxide Electrodes and Faradaic Impedance Investigation of the Oxygen Evolution Reaction from Alkaline Solution,” Electrochimica Acta, 44 (1998) 1525-1534.
Babic, R., Hukovic, M. M. and Jukic, A., “A Stude of Copper Passivity by Electrochemical Impedance Spectroscopy,” J. Electrochem. Soc., 148, 4 (2001) B146-B151.
Bard, A. J. and Faulkner, L. R., Electrochemical Methods Fundamentals and Applications, 2nd ed., John Wiley & Sons, New York (2001).
Bielmann, M., Mahajan, U., Singh, R. K., Shah, D. O. and Palla, B. J., “Enhanced Tungsten Chemical Mechanical Polishing Using Stable Alumina Slurries,” Electrochemical and Solid-State Letters, 2, 3 (1999) 148-150.
Bhushan, M., Rouse, R. and Lukens. J. E., “Chemical-Mechanical Polishing in Semidirect Contact Mode,” J. Electrochem. Soc., 142, 11 (1995) 3845-3851.
Bohr, M. T., “Interconnect Scaling - the Real Limiter to High Performance ULSI,” Technical Digest - International Electron Devices Meeting (1995) 241-244.
Cadien, K. C. and Feller, D. A., “Slurries For Chemical Mechanical Polishing,” U.S. Pat. 5516346 (1996).
Carpio, R. A., “Copper Chemical Mechanical Polishing Slurry Utilizing a Chromate Oxidant,” U.S. Pat. 5840629 (1998).
Carpio, R. A., Jairath, R. and Kalpathy-Cramer, J., “Slurry Formulation for Chemical Mechanical Polishing of Metals,” U.S. Pat. 5866031 (1999).
Carpio, R., Farkas, J. and Jairath, R., “Initial Study on Copper CMP Slurry Chemistries,” Thin Solid Films, 266 (1995) 238-244.
Chang, C. Y. and Sze, S. M., ULSI Technology, McGraw - Hill, New York ch8 (1996).
Charlot, G., L’analyse Qualitative et les Reactions en Solution, 4th ed., Masson, Paris (1957).
Cook L. M., “Chemical processes in glass polishing,” J. Non-Cryst. Solids, 120, (1990) 152.
Coppeta, J., Rogers, C., Racz, L., Philipossian, A. and Kaufman, F. B., “Investigating Slurry Transport beneath a Wafer during Chemical Mechanical Polishing Processes,” J. Electrochem. Soc., 147 (5) (2000) 1903-1909.
DeJule, R., Semiconductor International, 11 (1999) 54.
D''Elia, E., Barcia, O. E., Mattos, O. R., Pebere, N. and Tribollet, B., "High-Rate Copper Dissolution in Hydrochloric Acid Solution," J. Electrochem. Soc., 143, 3 (1996) 4095-4100.
de Wit, H. J., Wijenberg, C. and Crevecoeur, C., “Impedance Measurements during Anodization of Aluminum,” J. Electrochem. Soc., 126, 5 (1979) 779-785.
Farkas, J., Bajaj, R., Freeman, M., Watts, D. K. and Dos, S., “Chemical Mechanical Polishing (CMP) Slurry for Polishing Copper Interconnects which Use Tantalum-Based Barrier Layers,” U.S. Pat. 6001730 (1999).
Fury, M. A., “Emerging Developments in CMP for Semiconductor Planarization,” Solid State Technology, 38, 4 (1995) 47.
Griffin, A. J., Brotzen, F. R. and Dunn, C. F., “Impedance-Spectroscopy Response of Aluminum-Copper-Silicon Alloys,” J. Electrochem. Soc., 141, 12 (1994) 3473-3479.
Grover, G. S., Liang, H., Ganeshkumar, S. and Fortino, W., “Effect of Slurry Viscosity Modification on Oxide and Tungsten CMP,” Wear, 214 (1998) 10-13.
Gutmann, R. J., Steigerwald, J. M., You, L., Price, D. T., Neirynck, J., Duquette, D. J. and Murarka, S. P., “Chemical-Mechanical Polishing of Copper with Oxide and Polymer Interlevel Dielectrics,” Thin Solid Films, 270 (1995) 596-600.
Hariharaputhiran, M., Zhang, J., Ramarajan, S., Keleher, J. J., Li, Y. and Babu, S. V., “Hydroxyl Radical Formation in H2O2 -Amino Acid Mixtures and Chemical Mechanical Polishing of Copper,” J. Electrochem. Soc.,147, 10 (2000) 3820-3826.
Hiemenz, P. C., Principles of Colloid and Surface Chemistry, 2nd ed., M. Dekker, New York (1986).
Hu, T. C., Chiu, S. Y., Dai, B. T., Tsai, M. S., Tung, I. C. and Feng, M. S., “Nitric Acid-Based Slurry with Citric Acid as an Inhibitor for Copper Chemical Mechanical Polishing,” Materials Chemistry and Physics, 61 (1999) 169-171.
Jairath, R., Fakas, J., Huang, C. K., Stell, M., Tzeng, S. M., “Chemical Mechanical Polishing Process Manufacturability,” Solid State Technology, 37, 7 (1994) 4.
Johnson, H. E. and Leja, J.,“On the Potential/pH Diagrams of the Cu-NH3-H2O and Zn-NH3-H2O Systems,”J. Electrochem. Soc., 112, 6 (1965) 638-641.
Jones, D. A., Principles and Prevention of Corrosion, 2nd ed., Prentice-Hall, NJ (1996).
Juttner, K., Lorenz, W. J. and Mansfeld, F., Corrosion, 135 (1989) 89.
Kao Corporation, Surfactants-A Comprehensive Guide, (1983) 43.
Kaufman, F. B., Thompson, D. B., Broadie, R. E., Jaso, M. A., Guthrie, W. L., Pearson, D. J. and Small, M. B., “Chemical-Mechanical Polishing for Fabricating Patterned W Metal Features as Chip Interconnects,” J. Electrochem. Soc., 138, 11 (1991) 3460-3465.
Kaufman, V. B., Kistler, R. C. and Wang, S., “Chemical Mechanical Polishing Slurry Useful for Copper/Tantalum Substrates,” U.S. Pat. 6063306 (2000).
Kaufman, V. B. and Wang, S., “Multi-Oxidizer Precursor for Chemical Mechanical Polishing,” U.S. Pat. 6033596 (2000)
Kim, D. J., Kim, Y. T. and Park, J.W., “Nanostructured Ta-Si-N Diffusion Barriers for Cu Metallization,” Journal of Applied Physics, 82, 10 (1997) 4847.
Kim, H. G., An, Y. M., Moon D. K. and Park J. G., “Effect of Chemicals and Slurry Particles on Chemical Mechanical Polishing of Polyimide,” Jpn J. Appl. Phys., 39, 1, 3A (2000) 1085-1090.
Kneer, E. A., Raghunath, C., Mathew, V. and Raghavan, S., “Electrochemical Measurements during The Chemical Mechanical Polishing of Tungsten Thin Films,” J. Electrochem. Soc., 144, 9 (1997) 3041-3049.
Kneer, E. A., Raghunath, C. and Raghavan, S., “Electrochemistry of Chemical Vapor Deposited Tungsten Films with Relevance to Chemical Mechanical Polishing,” J. Electrochem. Soc., 143, 12 (1996) 4095-4100.
Kondo, S., Sakuma, N., Homma, Y. and Ohashi, N., “Slurry Chemical Corrosion and Galvanic Corrosion during Copper Chemical Mechanical Polishing,” Jpn J. Appl. Phys., 39, 1, 11 (2000) 6216-6222.
Kotrly, S. and Sucha, L., Handbook of Chemical Equilibria in Analytical Chemistry, Halsted Press, New York (1985).
Kuiry, S. C., Seal, S., Fei, W., Ramsdell, J., Desau, V. H., Li, Y., Babu, S. V. and Wood, B., “Effect of pH and H2O2 on Ta Chemical Mechanical Planarization,” J. Electrochem. Soc., 150, 1 (2003) C36-C43.
Kuo, H. and Tsai, W. T, “Electrochemical Behavior of Alumina during Chemical Mechanical Polishing in Phosphoric Acid Base Slurry,” J. Electrochem. Soc., 147, 1 (2000) 149-154.
Kuo, H. and Tsai, W. T, “Effect of Applied Potential on the Chemical Mechanical Polishing of Aluminum in Phosphoric Acid Base Slurry,” J. Electrochem. Soc., 147, 6 (2000) 2136-2142.
Kuo, H. and Tsai, W. T, “Effects of Alumina and Hydrogen Peroxide on the Chemical-Mechanical Polishing of Aluminum in Phosphoric Acid Base Slurry,” Materials Chemistry and Physics, 69 (2001) 53-61.
Lange, N. A., Lange''s Handbook of Chemistry, 13th ed., McGraw-Hill, New York (1985).
Lee, K. J., “Chemical-Mechanical Polishing Slurry,” U.S. Pat. 6214098 (2001).
Lide, D. R., CRC Handbook of Chemistry and Physics, CRC Press, Inc. (1993).
Liu, C. W., Dai, B. T., Tseng, W. T. and Yeh, C. F., "Modeling of the Wear Mechanism during Chemical Mechanical Polishing,” J. Electrochem. Soc., 143, 2 (1996) 716-721.
Li, Y. and Babu, S. V., “Chemical Mechanical Polishing of Copper and Tantalum in Potassium Iodate-Based Slurries,” Electrochemical and Solid-State Letters, 4, 2 (2001) G20-G22.
Li, Y. and Babu, S. V., “Chemical-Mechanical Polishing of Copper and Tantalum with Silica Abrasives,” J. Mater. Res., 16, 4 (2001) 1066-1073.
Luo, Q., Campbell, D. R. and Babu, S. V., “Stabilization of Aluminum Slurry for Chemical-Mechanical Polishing of Copper,” Langmuir, 12 (1996) 3563-3566.
Luo, Q., Campbell, D. R. and Babu, S. V., “Chemical-Mechanical Polishing of Copper in Alkaline Media,” Thin Solid Films, 311 (1997) 177-182.
Luo, Q., Ramarajan, S. and Babu, S.V., “Modification of the Preston Equation for the Chemical-Mechanical Polishing of Copper,” Thin Solid Films, 335 (1998) 160-167.
Mess, F., Levert, J. and Danyluk, S., “Vertical Differential Displacements at a Pad/Sapphire Interface during Polishing,” Wear, 211, 2 (1997) 311-315.
Osseo-Asare, K., Anik, M. and DeSimone, J., “Chemical Mechanical Polishing of Tungsten: Effect of Tungstate Ion on the Electrochemical Behavior of Tungsten,” Electrochemical and Solid-State Letters, 2, 3 (1999) 143-144.
Palla, B. J. and Shah D. O., “Correlation of Observed Stability and Polishing Performance to Abrasive Particle Size for CMP,” IEEE/CPMT, Electronic Manufacturing Technology Symposium (1999) 362-369.
Palla, B. J. and Shah, D. O., “Stabilization of High Ionic Strength Slurries Using the Synergistic Effects of a Mixed Surfactant System,” Journal of Colloid and Interface Science, 223 (2000) 102-111.
Paul, E., “A Model of Chemical Mechanical Polishing,” J. Electrochem. Soc., 148, 6 (2001) G355-G358.
Paul, E., “Application of a CMP Model to Tungsten,” J. Electrochem. Soc., 148, 6 (2001) G359-G363.
Roberts, B., “Chemical Mechanical Planarization,” IEEE, SEMI Advanced Semiconductor Manufacturing Conference (1992) 206-210.
Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Lomdon (1965).
Ramarajan, S., Li, Y., Hariharaputhiran, M., Her Y. S. and Babu, S. V., “Effect of pH and Ionic Strength on Chemical Mechanical Polishing of Tantalum,” Electrochemical and Solid-State Letters, 3, 5 (2000) 232-234.
Rogers, C., Coppeta, J., Racz, L., Philipossian, A., Kaufman, F. B. and Bramono, D., “Analysis of Flow Between a Wafer and Pad during CMP Processes,” Journal of Electronic Materials, 27, 10 (1998) 1082-1087.
Runnels, S. R., “Feature-Scale Fluid-Based Erosion Modeling for Chemical Mechanical Polishing,” J. Electrochem. Soc., 141 (1994) 1900.
Runnels, S. R. and Eyman, L. M., “Tribology Analysis of Chemical-Mechanical Polishing,” J. Electrochem. Soc., 141, 6 (1994) 1698-1701.
Stavreva, Z., Zeidler, D., Plotner, M. and Drescher, K., “Characteristic in Chemical-Mechanical Polishing of Copper: Comparison of Polishing Pads,” Applied Surface Science, 108 (1997) 39-44.
Stavreva, Z., Zeidler, D., Plotner, M. and Drescher, K., “Influence of Process Parameters on Chemical-Mechanical Polishing of Copper,” Microelectronic Engineering, 37/38 (1997) 143-149.
Steigerwald, J. M., Duquette, D. J., Murarka, S. P. and Gutmann, R. J., “Electrochemical Potential Measurements during the Chemical-Mechanical Polishing of Copper Thin Films,” J. Electrochem. Soc., 142, 7 (1995) 2379-2385.
Steigerwald, J. M., Murarka, S. P., Gutmann, R. J. and Duquette, D. J., “Effect of Copper Ions in the Slurry on the Chemical-Mechanical Polish Rate of Titanium,” J. Electrochem. Soc., 141, 12 (1994) 3512-3517.
Steigerwald, J. M., Murarka, S. P. and Gutmann, R. J., Chemical Mechanical Planarization of Microelectronic Materials, John Wiley & Sons, New York (1997).
Steigerwald, J. M., Murarka, S. P., Gutmann, R. J. and Duquette, D. J., “Chemical Processes in the Chemical Mechanical Polishing of Copper,” Materials Chemistry and Physics, 41 (1995) 217-228.
Steigerwald, J. M., Zirpoli, R., Murarka, S. P., Price, D. and Gutmann, R. J., “Pattern Geometry Effects in the Chemical-Mechanical Polishing of Inlaid Copper Structures,” J. Electrochem. Soc., 141, 10 (1994) 2842-2848.
Steinbruchel, C., "Patterning of Copper for Multilevel Metallization: Reactive Ion Etching and Chemical-Mechanical Polishing," Applied Surface Science, 91 (1995) 139-146.
Subramanian, R. S., Zhang, L. and Babu, S. V., “Transport Phenomena in Chemical Mechanical Polishing,” J. Electrochem. Soc., 146, 11 (1999) 4263-4272.
Suetaka, W. and Morito, N., “Spectroscopic Investigation of Corrosion Inhibition of Copper by Benzotriazole and Its Related Compounds,” Atmospheric Environment, (1975) 67-76.
Sundararajan, S., Thakurta, D. G., Schwendeman, D. W., Murarka, S. P. and Gill, W. N., “Two-Dimensional Wafer-Scale Chemical Mechanical Planarization Models Based on Lubrication Theory and Mass Transport,” J. Electrochem. Soc., 146, 2 (1999) 761-766.
Sun, S. C., Tsai, M. H., Chiu, H.T., Chuang, S. H. “New CVD Tungsten Nitride Diffusion Barrier for Cu Interconnection,” Digest of Technical Papers - Symposium on VLSI Technology, (1996) 46-47.
Tamilmani, S., Huang, W., Raghavan, S. and Small, R., “Potential-pH Diagrams of Interest to Chemical Mechanical Planarization of Copper,” J. Electrochem. Soc., 149, 12 (2002) G638-G642.
Thakurta, D. G., Borst, C. L., Schwendeman, D. W., Gutmann, R. J. and Gill, W. N., “Pad Porosity, Compressibility and Slurry Delivery Effects in Chemical-Mechanical Planarization: Modeling and Experiments,” Thin Solid Films, 366 (2000) 181-190.
Thierry, D. and Leygraf, C.,“Simultaneous Raman Spectroscopy and Electrochemical Studies of Corrosion Inhibiting Molecules on Copper,” J. Electrochem. Soc., 132, 5 (1985) 1009-1014.
Tichy, J., Levert, J. A., Shan, Lei. and Danyluk S., “Contact Mechanics and Lubrication Hydrodynamics of Chemical Mechanical Polishing,” J. Electrochem. Soc., 146, 4 (1999) 1523-1528.
Tomboli, D., Seal, S. and Desai, V., “Studies on Passivation Behavior of Tungsten in Application to Chemical Mechanical Polishing,” J. Vacuum Sci. Technol. A 17, 4 (1999) 1168-1173.
Tromans, D., “Active/Passive Behavior of Copper in Strong Sulfuric Acid,” J. Electrochem. Soc., 145 (1998) L42.
Tromans, D. and Silva, J. C., “Anodic Behavior of Copper in Chloride/Tolytriazole and Chloride/Benzotriazole Solution,” Corrosion Science, 53, 1 (1997) 16-24.
Tsai, T. H. and Yen, S. C., “Localized Corrosion Effects and Modifications of Acidic And Alkaline Slurries on Copper Chemical Mechanical Polishing,” Applied Surface Science, 201 (2003) 190-205.
Tseng, W. T., Kuo, P. L., Liao, C. L., Lu, R. and Lin J. F., “Novel Polymeric Surfactants for Improving Chemical Mechanical Polishing Performance of Silicon Oxide,” Electrochemical and Solid-State Letters, 4, 5 (2001) G42-G45.
Vallar, S., Houivet, D., Fallah, J. E., Kervadec, D. and Haussonne J. M., "Oxide Slurries Stability and Powers and Dispersion: Optimization with Zeta Potential and Rheological Measurements,” Journal of the European Ceramic Society, 19 (1999) 1017-1021.
Wang, J. F., Sethuraman, A., Wang, H. M. and Cook, L. M., “Chemical Mechanical Polishing Slurry for Metal Layers,”U.S. Pat. 5527423(1997)
Wang, M. T., Tsai, M. S., Liu, C., Tseng, W. T., Chang, T. C. and Chen, M. C., “Effects of Corrosion Environments on the Surface Finishing of Copper Chemical Mechanical Polishing,” Thin Solid Films, 308-309 (1997) 518-522.
Wang, Y. L., Liu, C., Feng, M. S. and Tseng, W. T., “A Modified Multi-Chemicals Spray Cleaning Process for Post-CMP Cleaning Application,” Materials Chemistry and Physics, 52 (1998) 23-30.
West, J. M., Basic Corrosion and Oxidation, John Wiley & Sons, New York (1983).
Xiao, H., Introduction to Semiconductor Manufacturing Technology, Prentice-Hall, NJ (2001).
Yang, G. R., Zhao, Y. P., Neirynck, J. M., Murarka, S. P. and Gutmann, R. J., “Chemical-Mechanical Polishing of Parylene N and Benzocyclobutene Films,” J. Electrochem. Soc., 144, 9 (1997) 3249-3255.
Yang, K., Avanzino, S. and Woo, C. M. C., “Slurry for Chemical Mechanical Polishing of Copper,” U.S. Pat. 6143656 (2000).
Zeidler, D., Stavreva, Z., Plotner, M. and Drescher, K., “The Interaction between Different Barrier Metals and the Copper Surface during the Chemical-Mechanical Polishing,” Microelectronic Engineering, 37/38 (1997) 237-243.
Zeidler, D., Stavreva, Z., Plotner, M. and Drescher, K., “Characterization of Cu Chemical Mechanical Polishing by Electrochemical Investigations,” Microelectronic Engineering, 33 (1997) 259-265.
Zhang, F. and Busnaina, A., “The Role of Particle Adhesion and Surface Deformation in Chemical Mechanical Polishing Processes,” Electrochemical and Solid-State Letters, 1, 4 (1998) 184-187.
Zhang, L., Raghavan, S., Meikle, S. and Hudson, G., “Inhibition of Alumina Deposition during Tungsten Chemical Mechanical Planarization Through the Use of Citric Acid,” J. Electrochem. Soc., 146, 4 (1999a) 1442-1447.
Zhang, L., Raghavan, S. and Weling, M., “Minimization of Chemical Mechanical Planarization Defects and Post-CMP Cleaning,” J. Vacuum Soc. Technol. B, 17, 5 (1999b) 2248-2255.
Zhao, B. and Shi, F. G., “Threshold Pressure and Its Influence in Chemical Mechanical Polishing for IC Fabrication,” IEEE, IEDM, 98 (1998) 341-344.
Zhao, B. and Shi, F. G., “Chemical Mechanical Polishing: Threshold Pressure and Mechanism,” Electrochemical and Solid-State Letters, 2, 3 (1999) 145-147.
李宗和,銅化學機械研磨製程及研磨液簡介,電子與材料,第7期(2000)88-94。
李宗和,半導體製程用之化學機械研磨組合物,TW 372327(1998)。
李宗和和葉翠萍,半導體製程用之化學機械研磨組合物,TW 455626 (1998)。
吳文發,銅導線之導體擴散阻障材料,電子月刊,第八卷,第四期 (1999)140-147。
莊達人,VLSI製造技術,高立圖書公司(2002)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔